Open Access
Issue |
EPJ Web Conf.
Volume 328, 2025
First International Conference on Engineering and Technology for a Sustainable Future (ICETSF-2025)
|
|
---|---|---|
Article Number | 01069 | |
Number of page(s) | 14 | |
DOI | https://doi.org/10.1051/epjconf/202532801069 | |
Published online | 18 June 2025 |
- W.B. Tesfay, J. Serna, and K. Rannenberg, "Privacybot: Detecting privacy sensitive information in unstructured texts," Proc. 34th Annu. IFIP WG 11.3 Conf. Data Appl. Secur. Priv. (DBSec), 2019, pp. 85-103. DOI: 10.1007/978-3-030-22479-0_6 [Google Scholar]
- R. Jin, X. He, and H. Dai, "On the security-privacy tradeoff in collaborative security," IEEE Commun. Mag., vol. 57, no. 10, pp. 40-46, Oct. 2019. DOI: 10.1109/MCOM.001.1800566 [Google Scholar]
- I. Calzada, "Citizens' data privacy in China: The state of the art of the Personal Information Protection Law (PIPL)," Data & Policy, vol. 4, e28, 2022. DOI: 10.1017/dap.2022.27 [Google Scholar]
- J. Scheibner, M. Ienca, and E. Vayena, "Health data privacy through homomorphic encryption and distributed ledger computing: An ethical-legal qualitative expert assessment study," BMC Med. Ethics, vol. 23, no. 1, 2022. DOI: 10.1186/s12910-022-00789-2 [Google Scholar]
- C. Gentry, "Fully homomorphic encryption using ideal lattices," Proc. 41st ACM Symp. Theory Comput. (STOC), 2009, pp. 169-178. [Google Scholar]
- O. Vovk, G. Piho, and P. Ross, "Anonymization methods of structured health care data: A literature review," Health Inf. J., vol. 27, no. 1, pp. 3-21, Mar. 2021. DOI: 10.1177/1460458220916255 [Google Scholar]
- G. Yi and Z. Xie, "Research on the anonymity method based on k-anonymity for electronic commerce," Phys. Procedia, vol. 24, pp. 2197-2201, 2012. DOI: 10.1016/j.phpro.2012.02.325 [Google Scholar]
- F. Ashkouti, A. Jolfaei, A. Dehghantanha, and R. Khayami, "DHkmeans-ldiversity: Distributed hierarchical K-means for satisfaction of the l-diversity privacy model using Apache Spark," J. Inf. Secur. Appl., vol. 63, 2022. DOI: 10.1016/j.jisa.2021.103032 [Google Scholar]
- J. Vasa and A. Thakkar, "Deep learning: Differential privacy preservation in the era of big data," IEEE Access, vol. 11, pp. 20988-21006, 2023. DOI: 10.1109/ACCESS.2023.3240022 [Google Scholar]
- R. Ratra, P. Gulia, and N.S. Gill, "Evaluation of re-identification risk using anonymization and differential privacy in healthcare," Int. J. Adv. Comput. Sci. Appl., vol. 13, no. 2 pp. 405-413, 2022. [Google Scholar]
- K.S. Banu, M. Uma, and K.A. Asirvadam, "Non-cryptographic security to data: Distortion based anonymization techniques," Procedia Comput. Sci., vol. 32, pp. 497-504, 2014. DOI: 10.1016/j.procs.2014.05.448 [CrossRef] [Google Scholar]
- M.C. Compagnucci, L. Spataro, A. Lagasio, and L. Compagnucci, "Homomorphic encryption: The 'holy grail' for big data analytics and legal compliance in the pharmaceutical and healthcare sector?," J. Inf. Rights, Policy Pract., vol. 4, no. 1, 2019. DOI: 10.5334/jmir.58 [Google Scholar]
- G. Zyskind and O. Nathan, "Decentralizing privacy: Using blockchain to protect personal data," Proc. IEEE Secur. Privacy Workshops (SPW), 2015, pp. 180-184. DOI: 10.1109/SPW.2015.27 [Google Scholar]
- J. Lin, W. Yu, N. Zhang, X. Yang, H. Zhang, and W. Zhao, "A survey on Internet of Things: Architecture, enabling technologies, security and privacy, and applications," IEEE Internet Things J., vol. 4, no. 5, pp. 1125-1142, Oct. 2017. DOI: 10.1109/JIOT.2017.2683200 [CrossRef] [Google Scholar]
- H. Takabi, J.B.D. Joshi, and G.-J. Ahn, "Security and privacy challenges in cloud computing environments," IEEE Secur. Priv., vol. 8, no. 6, pp. 24-31, Nov.-Dec. 2010. DOI: 10.1109/MSP.2010.186 [CrossRef] [Google Scholar]
- M. Idris, E. Willya, I. Wekke, and S. Mokodenseho, "Peace resolution in education and application on information and communication technology," Int. J. Adv. Sci. Technol., vol. 29, no. 6 pp. 1459-1467, 2021. [Google Scholar]
- O. Vovk, G. Piho, and P. Ross, "Anonymization methods of structured health care data: A literature review," in Proc. Int. Conf. Model Data Eng. (MEDI), 2021, pp. 175-189. DOI: 10.1007/978-3-030-89391-1 14 [Google Scholar]
- R. Ratra, P. Gulia, and N.S. Gill, "Evaluation of re-identification risk using anonymization and differential privacy in healthcare," Int. J. Adv. Comput. Sci. Appl., vol. 13, no. 2 pp. 405-413, 2022. [Google Scholar]
- K. Devaki, "Re-encryption model for multi-block data updates in network security," in Proc. Int. Conf. Appl. Artif. Intell. Comput. (ICAAIC), 2022, pp. 1331-1336. DOI: 10.1109/ICAAIC53929.2022.9793160 [Google Scholar]
- M. Goldblum, L. Fowl, X. Zhang, A. Fowl, and T. Goldstein, "Dataset security for machine learning: Data poisoning, backdoor attacks, and defenses," IEEE Trans. Pattern Anal. Mach. Intell., vol. 45, no. 2, pp. 1563-1580, Feb. 2023. DOI: 10.1109/TPAML2022.3157379 [CrossRef] [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.