Open Access
Issue
EPJ Web Conf.
Volume 328, 2025
First International Conference on Engineering and Technology for a Sustainable Future (ICETSF-2025)
Article Number 01074
Number of page(s) 15
DOI https://doi.org/10.1051/epjconf/202532801074
Published online 18 June 2025
  1. Weir, P., Dahlhaus, P. Beyond soil moisture probes: improving field scale soil moisture mapping. Discov. Soil 1, 25 (2024). https://doi.org/10.1007/s44378-024-00025-0 [Google Scholar]
  2. Fäth, J., Kneisel, C. Multi-method soil moisture monitoring at two temperate forest stands in Germany. Discov Appl Sci 6, 573 (2024). https://doi.org/10.1007/s42452-024- 06262-w [Google Scholar]
  3. Chang, B., Zhang, X., Bian, H. et. al. Localization algorithm of soil moisture monitoring in irrigation area based on weighted correction of distance measurement. Discov Appl Sci 6, 470 (2024). https://doi.org/10.1007/s42452-024-06166-9 [Google Scholar]
  4. Rajeev, H., Gururaj, P. & Pathak, A.A. Dynamic monitoring of surface soil moisture fluctuations using synthetic aperture radar and data-driven algorithms. Appl Geomat 17, 1-15 (2025). https://doi.org/10.1007/s12518-024-00606-2 [Google Scholar]
  5. Zhang, Q., Yang, X., Liu, C. et. al. Monitoring soil moisture in winter wheat with crop water stress index based on canopy-air temperature time lag effect. Int J Biometeorol 68, 647-659 (2024). https://doi.org/10.1007/s00484-023-02612-2 [Google Scholar]
  6. Abdelal, Q., Al-Kilani, M.R. & Al-Shishani, G. Impact of Soil Particle Size on Soil Moisture Measurements through Dielectric and Electrical Resistance Properties. Eurasian Soil Sc. 58, 32 (2025). https://doi.org/10.1134/S1064229324602270 [Google Scholar]
  7. Forster, N.A., Wilson, S.C. & Tighe, M.K. Microplastic surface retention and mobility on hiking trails. Environ Sci Pollut Res 30, 46368-46382 (2023). https://doi.org/10.1007/s11356-023-25635-z [Google Scholar]
  8. Bhamidipati, K., Muppidi, S., Reddy, P.V.B. et. al. Soil Moisture and Heat Level Prediction for Plant Health Monitoring Using Deep Learning with Gannet Namib Beetle Optimization in IoT. Appl Biochem Biotechnol 196, 2289-2317 (2024). https://doi.org/10.1007/s12010-023-04636-1 [Google Scholar]
  9. Mawandha, H.G., Pratama, A.D., Al Ghifari, M.R. et. al. Evaluation of Sentinel-1 Satellite-based Soil Moisture Products for Runoff Modelling with Karst Formation Characteristics. Water Resour Manage 39, 821-846 (2025). https://doi.org/10.1007/s11269-024-03992-9 [Google Scholar]
  10. Gupta, S.K., Singh, S.K., Kanga, S. et. al. Unearthing India's soil moisture anomalies: impact on agriculture and water resource strategies. Theor Appl Climatol 155, 75757590 (2024). https://doi.org/10.1007/s00704-024-05088-1 [Google Scholar]
  11. Amani, S., Keshtdar, A. & Ghiassi, R. Investigation of the Effectiveness of Electrical Resistivity Tomography in Monitoring and Detecting Hydrocarbon Contamination in Sandy Soil at Various Moisture: Pilot Scale. Water Air Soil Pollut 235, 175 (2024). https://doi.org/10.1007/s11270-024-06984-y [Google Scholar]
  12. Thaggahalli Nagaraju, S.K., Pathak, A.A. Retrieving Surface and Rootzone Soil Moisture Using Microwave Remote Sensing. J Indian Soc Remote Sens 52, 1415-1430 (2024). https://doi.org/10.1007/s12524-024-01881-7 [Google Scholar]
  13. Khosravi Aqdam, K., Nouri, A., Miran, N. et. al. Enhanced Surface Soil Moisture Prediction Through Dual-Satellite Spectral Fusion. Earth Syst Environ (2025). https://doi.org/10.1007/s41748-025-00638-7 [Google Scholar]
  14. Tang, Z., Zhang, W., Xiang, Y. et. al. Monitoring of Soil Moisture Content of Winter Oilseed Rape (Brassica napus L.) Based on Hyperspectral and Machine Learning Models. J Soil Sci Plant Nutr 24, 1250-1260 (2024). https://doi.org/10.1007/s42729- 024-01626-y [Google Scholar]
  15. Edomskaya, M.A., Lukashenko, S.N., Shupik, A.A. et. al. Migration of Plutonium and Trace Elements and Macroelements in the "Soil-Plant" System at Various Amounts of Soil Moisture. Biol Bull Russ Acad Sci 51, 3655-3665 (2024). https://doi.org/10.1134/S1062359024701450. [Google Scholar]
  16. Neema Amish Ukani, Shelej Khera, Saurabh S. Chakole (2024) IoT Enabled Design of developed hardware for the Graphene Derivatives Based Moisture sensor and Testing under Laboratory Conditions. Frontiers in Health Informatics, 13 (3),4436-4447. [Google Scholar]
  17. Ukani, N.A. ., Khera, S.., & Chakole, S.S.. (2023). Experimental Investigation of Graphene Derivatives Based Moisture Sensor Transfer Characteristics for Agriculture Applications. International Journal of Intelligent Systems and Applications in Engineering, 12(3s), 658-665. Retrieved from https://ijisae.org/index.php/IJISAE/article/view/3763 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.