Open Access
Issue
EPJ Web Conf.
Volume 328, 2025
First International Conference on Engineering and Technology for a Sustainable Future (ICETSF-2025)
Article Number 01073
Number of page(s) 12
DOI https://doi.org/10.1051/epjconf/202532801073
Published online 18 June 2025
  1. Sujatha, R., Krishnan, S., Chatterjee, J.M. et al. Advancing plant leaf disease detection integrating machine learning and deep learning. Sci Rep 15, 11552 (2025). https://doi.org/10.1038/s41598-024-72197-2 [CrossRef] [PubMed] [Google Scholar]
  2. Paramesha, K., Jalapur, S., Hanok, S. et al. Machine Learning and Deep Learning Approaches for Guava Disease Detection. SN COMPUT. SCI. 6, 361 (2025). https://doi.org/10.1007/s42979-025-03886-6 [CrossRef] [Google Scholar]
  3. Shinde, N., Ambhaikar, A. An efficient plant disease prediction model based on machine learning and deep learning classifiers. Evol. Intel. 18, 14 (2025). https://doi.org/10.1007/s12065-024-01000-y [CrossRef] [Google Scholar]
  4. Jadhav-Mane, S., Singh, J. Mango Skin Disease Detection Techniques Based on Machine Learning Techniques: A Review. Wireless Pers Commun 139, 1881-1904 (2024). https://doi.org/10.1007/s11277-024-11677-0 [CrossRef] [Google Scholar]
  5. Midhunraj, P.K., Thivya, K.S. & Anand, M. An Analysis of Plant Diseases on Detection and Classification: From Machine Learning to Deep Learning Techniques. Multimed Tools Appl 83, 48659-48682 (2024). https://doi.org/10.1007/s11042-023-17600-2 [Google Scholar]
  6. Sahu, S.K., Pandey, M. Hybrid Xception transfer learning with crossover optimized kernel extreme learning machine for accurate plant leaf disease detection. Soft Comput 27, 13797-13811 (2023). https://doi.org/10.1007/s00500-023-09048-1 [CrossRef] [Google Scholar]
  7. Bilal, A., Khan, J.A., Alzahrani, A. et al. Fuzzy deep learning architecture for cucumber plant disease detection and classification. J Big Data 12, 117 (2025). https://doi.org/10.1186/s40537-025-01156-z [CrossRef] [Google Scholar]
  8. Tugrul, K.M. Early Detection of Sugar Beet Cercospora Leaf Spot Disease Using Machine Learning-Assisted Thermal Image Processing Method. Sugar Tech 27, 954-964 (2025). https://doi.org/10.1007/s12355-025-01553-x [CrossRef] [Google Scholar]
  9. Jomsri, P., Prangchumpol, D. & Poonsilp, K. IoT-enabled monitoring and comparative analysis of machine learning techniques for detection of plant diseases in marigolds. Int. j. inf. tecnol. (2024). https://doi.org/10.1007/s41870-024-02271-5 [Google Scholar]
  10. M. M., Anandamurugan, S. Innovative Deep Learning Framework for Accurate Plant Disease Detection and Crop Productivity Enhancement. Cogn Comput 17, 58 (2025). https://doi.org/10.1007/s12559-025-10421-5 [CrossRef] [Google Scholar]
  11. Deepti, K. Comparative Analysis of Machine Learning Techniques for Plant Disease Detection-Data Deployment. J. Inst. Eng. India Ser. B 104, 837-849 (2023). https://doi.org/10.1007/s40031-023-00897-w [CrossRef] [Google Scholar]
  12. Gupta, P., Jadon, R.S. PLANT Detect Net: a hybrid IoT and deep learning framework for secure plant disease detection and classification. Evolving Systems 16, 55 (2025). https://doi.org/10.1007/s12530-025-09685-x [CrossRef] [Google Scholar]
  13. Ahmed, I., Yadav, P.K. Predicting Apple Plant Diseases in Orchards Using Machine Learning and Deep Learning Algorithms. SN COMPUT. SCI. 5, 700 (2024). https://doi.org/10.1007/s42979-024-02959-2 [CrossRef] [Google Scholar]
  14. Shafik, W., Tufail, A., De Silva Liyanage, C. et al. Using transfer learning-based plant disease classification and detection for sustainable agriculture. BMC Plant Biol 24, 136 (2024). https://doi.org/10.1186/s12870-024-04825-y [CrossRef] [PubMed] [Google Scholar]
  15. Thiagarajan, J.D., Kulkarni, S.V., Jadhav, S.A. et al. Analysis of banana plant health using machine learning techniques. Sci Rep 14, 15041 (2024). https://doi.org/10.1038/s41598-024-63930-y [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.