Open Access
Issue |
EPJ Web Conf.
Volume 328, 2025
First International Conference on Engineering and Technology for a Sustainable Future (ICETSF-2025)
|
|
---|---|---|
Article Number | 01072 | |
Number of page(s) | 14 | |
DOI | https://doi.org/10.1051/epjconf/202532801072 | |
Published online | 18 June 2025 |
- Al-Qaysi, N., Mohamad-Nordin, N., & Al-Emran, M. (2021). A systematic review of social media acceptance from the perspective of educational and information systems theories and models. Journal of Educational Computing Research, 59(2), 280312. https://doi.org/10.1177/0735633120962061 [Google Scholar]
- Chen, X., Liu, C., Li, B., & Xu, K. (2022). Federated learning for adaptive e-learning systems: A privacy-preserving approach. IEEE Transactions on Learning Technologies, 15(3), 456-470. https://doi.org/10.1109/TLT.2022.3156789 [Google Scholar]
- Deng, Y., & Yu, Z. (2023). A hierarchical semantic graph-based approach for personalized learning path recommendation. Expert Systems with Applications, 213, 119284. https://doi.org/10.1016/j.eswa.2022.119284 [Google Scholar]
- El Saddik, A., Hossain, M.S., & Kantarci, B. (2021). Federated learning for AI-driven e-learning systems: Opportunities and challenges. IEEE Multimedia, 28(2), 8997. https://doi.org/10.1109/MMUL.2021.3056778 [Google Scholar]
- Gao, J., Wang, H., & Shen, H. (2023). Context-aware federated learning for adaptive e-learning in edge computing environments. Future Generation Computer Systems, 141, 512-525. https://doi.org/10.1016/j.future.2022.12.015 [Google Scholar]
- Huang, L., Joseph, A.D., Nelson, B., Rubinstein, B.I., & Tygar, J.D. (2021). Adversarial machine learning in federated learning systems. ACM Computing Surveys, 54(5), 1-36. https://doi.org/10.1145/3453165 [Google Scholar]
- Khan, M.A., & Algarni, F. (2023). A novel deep learning-based semantic analysis framework for adaptive e-learning. Computers & Education, 194, 104703. https://doi.org/10.1016/j.compedu.2022.104703 [CrossRef] [Google Scholar]
- Li, T., Sahu, A.K., Talwalkar, A., & Smith, V. (2022). Federated learning: Challenges, methods, and future directions. IEEE Signal Processing Magazine, 37(3), 5060. https://doi.org/10.1109/MSP.2020.2975749 [Google Scholar]
- Liu, Y., Kang, Y., Xing, C., Chen, T., & Yang, Q. (2021). A secure federated transfer learning framework for adaptive e-learning. IEEE Intelligent Systems, 36(5), 5866. https://doi.org/10.1109/MIS.2021.3086281 [CrossRef] [Google Scholar]
- Ma, L., & Zhang, Y. (2023). Semantic-enhanced knowledge graphs for adaptive learning recommendations. *Knowledge-Based Systems, 260*, 110145. https://doi.org/10.1016/j.knosys.2022.110145 [CrossRef] [Google Scholar]
- Mouri, K., Uosaki, N., & Ogata, H. (2021). Context-aware personalized learning path recommendation using federated learning. Educational Technology & Society, 24(4), 114. https://www.jstor.org/stable/48629250 [Google Scholar]
- Nguyen, D.C., Ding, M., Pathirana, P.N., Seneviratne, A., & Poor, H.V. (2022). Federated learning for Internet of Things: A comprehensive survey. IEEE Communications Surveys & Tutorials, 24(3), 16251658. https://doi.org/10.1109/COMST.2022.3183916 [Google Scholar]
- Pardo, A., Han, F., & Ellis, R.A. (2023). A federated learning approach for adaptive assessment in online learning. Computers in Human Behavior, 138, 107473. https://doi.org/10.1016/j.chb.2022.107473 [CrossRef] [Google Scholar]
- Qiu, H., Zheng, Q., & Memon, A.R. (2022). A hierarchical semantic graph model for automated feedback generation in e-learning. IEEE Transactions on Education, 65(4), 612-623. https://doi.org/10.1109/TE.2022.3156782 [Google Scholar]
- Rana, M., & Dabbagh, N. (2023). Context-aware federated reinforcement learning for personalized e-learning systems. Journal of Artificial Intelligence in Education, 34(1), 45-67. https://doi.org/10.1007/s40593-022-00316-z [Google Scholar]
- Shorfuzzaman, M., Hossain, M.S., & Alhamid, M.F. (2021). Towards leveraging deep learning models for adaptive e-learning in smart environments. IEEE Access, 9, 4538245398. https://doi.org/10.1109/ACCESS.2021.3066889 [Google Scholar]
- Sun, Y., & Gao, F. (2022). A federated learning-based knowledge tracing model for adaptive learning systems. Interactive Learning Environments, 30(5), 789803. https://doi.org/10.1080/10494820.2022.2042039 [Google Scholar]
- Tang, C., Wu, X., & Chen, G. (2023). A knowledge graph-based semantic analysis framework for intelligent tutoring systems. Expert Systems with Applications, 214, 119102. https://doi.org/10.1016/j.eswa.2022.119102 [Google Scholar]
- Wang, L., Wang, X., & Zhang, L. (2021). Federated meta-learning for adaptive e-learning systems. Neural Computing and Applications, 33(14), 86238635. https://doi.org/10.1007/s00521-021-05908-9 [Google Scholar]
- Wu, D., Zhang, H., & Xue, Y. (2022). Context-aware federated learning for personalized e-learning recommendations. IEEE Transactions on Knowledge and Data Engineering, 34(8), 3845-3858. https://doi.org/10.1109/TKDE.2021.3056783 [Google Scholar]
- Xu, J., Glicksberg, B.S., & Bian, J. (2023). Hierarchical semantic graph representation learning for adaptive e-learning. Information Sciences, 622, 11241138. https://doi.org/10.1016/j.ins.2022.11.045 [Google Scholar]
- Yang, Q., Liu, Y., Chen, T., & Tong, Y. (2021). Federated machine learning: Concept and applications. ACM Transactions on Intelligent Systems and Technology, 10(2), 119. https://doi.org/10.1145/3298981 [Google Scholar]
- Zhang, W., Zhou, T., & Lu, Q. (2023). A hybrid federated learning and semantic reasoning approach for adaptive e-learning. Journal of Educational Technology & Society, 26(1), 1-15. https://www.jstor.org/stable/48707971 [Google Scholar]
- Zhao, Y., Li, M., & Wang, J. (2022). Privacy-preserving federated learning for adaptive e-learning systems. Computers & Security, 114, 102592. https://doi.org/10.1016/j.cose.2022.102592 [Google Scholar]
- Zhu, H., Jin, Y., & Tan, C. (2023). A survey on federated learning for adaptive educational systems. Artificial Intelligence Review, 56(3), 23452378. https://doi.org/10.1007/s10462-022-10219-z [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.