Open Access
Issue
EPJ Web Conf.
Volume 328, 2025
First International Conference on Engineering and Technology for a Sustainable Future (ICETSF-2025)
Article Number 01071
Number of page(s) 26
DOI https://doi.org/10.1051/epjconf/202532801071
Published online 18 June 2025
  1. Mahesar, A.R., Li, X. & Sajnani, D.K. Enhancing task scheduling and QoS optimization in mobile edge computing via microservice-oriented container selection. Computing 107, 60 (2025). https://doi.org/10.1007/s00607-024-01410-x [CrossRef] [Google Scholar]
  2. Sang, Y., Wei, J., Zhang, Z. et al. A mobility-aware task scheduling by hybrid PSO and GA for mobile edge computing. Cluster Comput 27, 7439-7454 (2024). https://doi.org/10.1007/s10586-024-04341-6 [CrossRef] [Google Scholar]
  3. Chai, S., Huang, J. Dependent Task Scheduling Using Parallel Deep Neural Networks in Mobile Edge Computing. J Grid Computing 22, 27 (2024). https://doi.org/10.1007/s10723-024-09744-8 [CrossRef] [Google Scholar]
  4. Younesi, A., Fazli, M.A. & Ejlali, A. A Novel Levy Walk-based Framework for Scheduling Power-intensive Mobile Edge Computing Tasks. J Grid Computing 22, 69 (2024). https://doi.org/10.1007/s10723-024-09786-y [CrossRef] [Google Scholar]
  5. Tang, H., Jiao, R., Xue, F. et al. Task Scheduling Strategy of Logistics Cloud Robot Based on Edge Computing. Wireless Pers Commun 137, 2339-2358 (2024). https://doi.org/10.1007/s11277-024-11498-1 [CrossRef] [Google Scholar]
  6. Chen, W., Liu, P. & Gong, H. Pursuit-Evasion Game Model-Based Mobile Edge Computing System for Efficient Task Scheduling in a Dynamic Environment. Dyn Games Appl (2024). https://doi.org/10.1007/s13235-024-00611-5 [Google Scholar]
  7. Liu, H., Tian, L. & Guo, M. ESDN: edge computing task scheduling strategy based on dilated convolutional neural network and quasi-newton algorithm. Cluster Comput 28, 151 (2025). https://doi.org/10.1007/s10586-024-04789-6 [CrossRef] [Google Scholar]
  8. Satouf, A., Hamidoglu, A., Gül, Ö.M. et al. Metaheuristic-based task scheduling for latency-sensitive IoT applications in edge computing. Cluster Comput 28, 143 (2025). https://doi.org/10.1007/s10586-024-04878-6 [CrossRef] [Google Scholar]
  9. Moradi, A., Rezaei, F. Intelligent and efficient task caching for mobile edge computing. Cluster Comput 27, 14095-14112 (2024). https://doi.org/10.1007/s10586-024-04658-2 [CrossRef] [Google Scholar]
  10. Xuan Wen, Sun, H.M. Parking Cooperation-Based Mobile Edge Computing Using Task Offloading Strategy. J Grid Computing 22, 8 (2024). https://doi.org/10.1007/s10723-023-09721-7 [CrossRef] [Google Scholar]
  11. Yadav, S.K., Kumar, R. ASME-SKYR framework: a comprehensive task scheduling framework for mobile cloud computing. Wireless Netw 30, 1221-1244 (2024). https://doi.org/10.1007/s11276-023-03565-5 [CrossRef] [Google Scholar]
  12. Sinha, A., Singh, S. & Verma, H.K. AI-Driven Task Scheduling Strategy with Blockchain Integration for Edge Computing. J Grid Computing 22, 13 (2024). https://doi.org/10.1007/s10723-024-09743-9 [CrossRef] [Google Scholar]
  13. Xie, B., Cui, H. Deep reinforcement learning-based dynamical task offloading for mobile edge computing. J Supercomput 81, 35 (2025). https://doi.org/10.1007/s11227-024-06603-x [CrossRef] [Google Scholar]
  14. Zhang, SH., Wang, JS., Zhang, SW. et al. MOSO: multi-objective snake optimizer with density estimation and grid indexing mechanism for edge computing task offloading and scheduling optimization. Cluster Comput 28, 244 (2025). https://doi.org/10.1007/s10586-024-04902-9 [CrossRef] [Google Scholar]
  15. Qin, Y., Chen, J., Jin, L. et al. Task offloading optimization in mobile edge computing based on a deep reinforcement learning algorithm using density clustering and ensemble learning. Sci Rep 15, 211 (2025). https://doi.org/10.1038/s41598-024-84038-3 [CrossRef] [PubMed] [Google Scholar]
  16. Chen, D., Liu, X. Mayfly Taylor Optimization-Based Graph Attention Network for Task Scheduling in Edge Computing. J Grid Computing 21, 53 (2023). https://doi.org/10.1007/s10723-023-09685-8 [CrossRef] [Google Scholar]
  17. Patel, R., Arya, R. Trust-based resource allocation and task splitting in ultra-dense mobile edge computing network. Peer-to-Peer Netw. Appl. 18, 38 (2025). https://doi.org/10.1007/s12083-024-01873-x [CrossRef] [Google Scholar]
  18. Ma, B., Xu, Y., Pan, Y. et al. A multi-user mobile edge computing task offloading and trajectory management based on proximal policy optimization. Peer-to-Peer Netw. Appl. 17, 4210-4229 (2024). https://doi.org/10.1007/s12083-024-01796-7 [CrossRef] [Google Scholar]
  19. Cui, Y., Zhang, D., Zhang, J. et al. Multi-user reinforcement learning based task migration in mobile edge computing. Front. Comput. Sci. 18, 184504 (2024). https://doi.org/10.1007/s11704-023-1346-3 [CrossRef] [Google Scholar]
  20. Chen, J., Leng, Y. & Huang, J. An intelligent approach of task offloading for dependent services in Mobile Edge Computing. J Cloud Comp 12, 107 (2023). https://doi.org/10.1186/s13677-023-00477-9 [CrossRef] [Google Scholar]
  21. Hu, SH., Luo, QY., Li, GH. et al. CA-DTS: A Distributed and Collaborative Task Scheduling Algorithm for Edge Computing Enabled Intelligent Road Network. J. Comput. Sci. Technol. 38, 1113-1131 (2023). https://doi.org/10.1007/s11390-023-2839-0 [CrossRef] [Google Scholar]
  22. Nkenyereye, L., Lee, B.G. & Chung, WY. Functionality-aware offloading technique for scheduling containerized edge applications in IoT edge computing. J Cloud Comp 14, 13 (2025). https://doi.org/10.1186/s13677-025-00737-w [CrossRef] [Google Scholar]
  23. Tong, Z., Liu, B., Mei, J. et al. Data Security Aware and Effective Task Offloading Strategy in Mobile Edge Computing. J Grid Computing 21, 41 (2023). https://doi.org/10.1007/s10723-023-09673-y [CrossRef] [Google Scholar]
  24. Chen, H., Liu, J. Burst load scheduling latency optimization through collaborative content caching in edge-cloud computing. Cluster Computer 28, 166 (2025). https://doi.org/10.1007/s10586-024-04891-9 [CrossRef] [Google Scholar]
  25. Li, J., Pan, Y., Xia, Y. et al. Optimizing dag scheduling and deployment for Iot data analysis services in the multi-UAV mobile edge computing system. Wireless Newt 30, 6465-6479 (2024). https://doi.org/10.1007/s11276-023-03451-0 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.