Open Access
Issue
EPJ Web Conf.
Volume 330, 2025
The 5th International Conference on Electrical Sciences and Technologies in the Maghreb (CISTEM 2024)
Article Number 02006
Number of page(s) 7
Section Advanced Control for Electric Machines and Drives
DOI https://doi.org/10.1051/epjconf/202533002006
Published online 30 June 2025
  1. M. Murataliyev, M. Degano, M. Di Nardo, N. Bianchi, C. Gerada, Synchronous Reluctance Machines: A Comprehensive Review and Technology Comparison, Proceedings of the IEEE 110, 382 (2022). 10.1109/JPROC.2022.3145662 [CrossRef] [Google Scholar]
  2. V. Kazakbaev, V. Prakht, V. Dmitrievskii, M.N. Ibrahim, S. Oshurbekov, S. Sarapulov, Efficiency Analysis of Low Electric Power Drives Employing Induction and Synchronous Reluctance Motors in Pump Applications, Energies 12, 1144 (2019). 10.3390/en12061144 [CrossRef] [Google Scholar]
  3. H. Heidari, A. Rassõlkin, A. Kallaste, T. Vaimann, E. Andriushchenko, A. Belahcen, D.V. Lukichev, A Review of Synchronous Reluctance Motor-Drive Advancements, Sustainability 13, 729 (2021). 10.3390/su13020729 [CrossRef] [Google Scholar]
  4. Y. Lin, Y. Sun, Y. Wang, S. Cai, J.X. Shen, Radial electromagnetic force and vibration in synchronous reluctance motors with asymmetric rotor structures, IET Electric Power Applications 15, 1125 (2021). 10.1049/elp2.12080 [CrossRef] [Google Scholar]
  5. P.S. Ghahfarokhi, A. Kallaste, T. Vaimann, A. Belahcen, Thermal Analysis of Totally Enclosed Fan Cooled Synchronous Reluctance Motor-state of art, in IECON 2019 - 45th Annual Conference of the IEEE Industrial Electronics Society (2019), Vol. 1, pp. 4372–4377 [Google Scholar]
  6. A. Rassolkin, H. Heidari, A. Kallaste, T. Vaimann, J.P. Acedo, E. Romero-Cadaval, Efficiency Map Comparison of Induction and Synchronous Reluctance Motors, in 2019 26th International Workshop on Electric Drives: Improvement in Efficiency of Electric Drives (IWED) (2019), pp. 1–4 [Google Scholar]
  7. M. Tursini, M. Villani, G. Fabri, A. Credo, F. Parasiliti, A. Abdelli, Synchronous Reluctance Motor: Design, Optimization and Validation, in 2018 International Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM) (2018), pp. 1297–1302 [Google Scholar]
  8. Y. Zahraoui, M. Moutchou, S. Tayane, Synchronous Reluctance Motor Performance Improvement Using a Seven-Level and Nine-Level Inverter Topologies, Arabian Journal for Science and Engineering 48, 15257 (2023). 10.1007/s13369-023-08027-w [CrossRef] [Google Scholar]
  9. H. Ghorbani, M. Moradian, M. Benbouzid, On the Optimal Selection of Flux Barrier Reconfiguration for a Five-Phase Permanent Magnet Assisted Synchronous Reluctance Machine for Low-Torque Ripple Application, Electronics 11, 41 (2022). 10.3390/electronics11010041 [Google Scholar]
  10. R. Rouhani, S.E. Abdollahi, S.A. Gholamian, Torque ripple reduction of a synchronous reluctance motor for electric vehicle applications, in 2018 9th Annual Power Electronics, Drives Systems and Technologies Conference (PEDSTC) (2018), pp. 386–391 [Google Scholar]
  11. S.S. Duvvuri, D.P. Garapati, G. Siripurapu, Parameter Sensitivity Analysis for 3-Φ Synchronous Reluctance Motor: A Critical Evaluation, in 2021 XVIII International Scientific Technical Conference Alternating Current Electric Drives (ACED) (2021), pp. 1–6 [Google Scholar]
  12. C. Fahassa, Y. Zahraoui, M. Akherraz, M. Kharrich, E.E. Elattar, S. Kamel, Induction Motor DTC Performance Improvement by Inserting Fuzzy Logic Controllers and Twelve-Sector Neural Network Switching Table, Mathematics 10, 1357 (2022). 10.3390/math10091357 [CrossRef] [Google Scholar]
  13. C. Fahassa, A. Abbou, Y. Zahraoui, M. Akherraz, Induction motor performance improvement using a five-level inverter topology and sliding mode controllers, Bulletin of Electrical Engineering and Informatics 12, 2693 (2023). 10.11591/eei.v12i5.5014 [CrossRef] [Google Scholar]
  14. N.G. Ozcelik, U.E. Dogru, M. Imeryuz, L.T. Ergene, Synchronous Reluctance Motor vs. Induction Motor at Low-Power Industrial Applications: Design and Comparison, Energies 12, 2190 (2019). 10.3390/en12112190 [CrossRef] [Google Scholar]
  15. V.M. Bida, D.V. Samokhvalov, F.S. Al-Mahturi, PMSM vector control techniques — A survey, in 2018 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus) (2018), pp. 577–581 [Google Scholar]
  16. Y. Zahraoui, M. Moutchou, S. Tayane, Vector control strategies for synchronous reluctance motor: constant current control, MTPA, MTPW and MPFC, International Journal of Modelling, Identification and Control 43, 154 (2023). 10.1504/IJMIC.2023.132607 [Google Scholar]
  17. D. Zakaria, H. Hindersah, A. Syaichu-Rohman, A.G. Abdullah, PI and PI Antiwindup Speed Control of Switched Reluctance Motor (SRM), in 2021 International Seminar on Intelligent Technology and Its Applications (ISITIA) (2021), pp. 46–51 [Google Scholar]
  18. H.J. Lee, T.g. Woo, S. Kim, Y.D. Yoon, Improved Neutral-Point Voltage Balancing Control With Time Delay Compensation and Antiwindup Loop for a Three-Level NPC Inverter, IEEE Transactions on Industry Applications 57, 4970 (2021). 10.1109/TIA.2021.3084914 [CrossRef] [Google Scholar]
  19. Y.C. Liu, S. Laghrouche, A. N’Diaye, M. Cirrincione, Model Predictive Current and Capacitor Voltage Control of Post-Fault Three-Level NPC Inverter-Fed Synchronous Reluctance Motor Drives, in 2019 International Aegean Conference on Electrical Machines and Power Electronics (ACEMP) & 2019 International Conference on Optimization of Electrical and Electronic Equipment (OPTIM) (2019), pp. 221–226 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.