Open Access
Issue
EPJ Web Conf.
Volume 330, 2025
The 5th International Conference on Electrical Sciences and Technologies in the Maghreb (CISTEM 2024)
Article Number 04006
Number of page(s) 7
Section Data Analysis, Internet of Things and Artificial Intelligence for Renewable Energy Applications
DOI https://doi.org/10.1051/epjconf/202533004006
Published online 30 June 2025
  1. N. Adnan, S. M. Nordin, M. A. bin Bahruddin, and M. Ali, ‘How trust can drive forward the user acceptance to the technology? In-vehicle technology for autonomous vehicle’, Transportation Research Part A: Policy and Practice, vol. 118, pp. 819–836, 2018, doi: https://doi.org/10.1016/j.tra.2018.10.019. [CrossRef] [Google Scholar]
  2. S. Zhang, R. Benenson, M. Omran, J. Hosang, and B. Schiele, ‘Towards Reaching Human Performance in Pedestrian Detection’, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 40, no. 4, pp. 973–986, 2018, doi: 10.1109/TPAMI.2017.2700460. [CrossRef] [PubMed] [Google Scholar]
  3. H. Lee, H. Chae, and K. Yi, ‘A Geometric Model based 2D LiDAR/Radar Sensor Fusion for Tracking Surrounding Vehicles’, IFAC-PapersOnLine, vol. 52, no. 8, pp. 130–135, 2019, doi: https://doi.org/10.1016/j.ifacol.2019.08.060. [CrossRef] [Google Scholar]
  4. N. Dalal and B. Triggs, ‘Histograms of oriented gradients for human detection’, in 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), 2005, pp. 886–893 vol. 1. doi: 10.1109/CVPR.2005.177. [Google Scholar]
  5. J. Platt, ‘Sequential Minimal Optimization: A Fast Algorithm for Training Support Vector Machines’, Advances in Kernel Methods-Support Vector Learning, vol. 208, Jul. 1998. [Google Scholar]
  6. C. G. Harris and M. J. Stephens, ‘A Combined Corner and Edge Detector’, in Alvey Vision Conference, 1988. [Online]. Available: https://api.semanticscholar.org/CorpusID:1694378 [Google Scholar]
  7. R. Girshick, J. Donahue, T. Darrell, and J. Malik, ‘Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation’, in 2014 IEEE Conference on Computer Vision and Pattern Recognition, 2014, pp. 580–587. doi: 10.1109/CVPR.2014.81. [Google Scholar]
  8. R. Girshick, ‘Fast R-CNN’, in Proceedings of the IEEE International Conference on Computer Vision, Institute of Electrical and Electronics Engineers Inc., 2015, pp. 1440–1448. doi: 10.1109/ICCV.2015.169. [Google Scholar]
  9. S. Ren, K. He, R. Girshick, and J. Sun, ‘Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks’, in Advances in Neural Information Processing Systems, C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett, Eds., Curran Associates, Inc., 2015. [Online]. Available: https://proceedings.neurips.cc/paper_files/paper/201 5/file/14bfa6bb14875e45bba028a21ed38046-Paper.pdf [Google Scholar]
  10. J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, ‘You Only Look Once: Unified, Real-Time Object Detection’, Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2016-December, pp. 779–788, Jun. 2015, doi: 10.1109/CVPR.2016.91. [Google Scholar]
  11. W. Liu et al., ‘SSD: Single shot multibox detector’, Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 9905 LNCS. pp. 21–37, 2016. doi: 10.1007/978-3-319-46448-0_2. [Google Scholar]
  12. J. Redmon and A. Farhadi, ‘YOLOv3: An Incremental Improvement’, Apr. 2018, [Online]. Available: https://arxiv.org/abs/1804.02767v1 [Google Scholar]
  13. A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao, ‘YOLOv4: Optimal Speed and Accuracy of Object Detection’, Apr. 2020, [Online]. Available: https://arxiv.org/abs/2004.10934v1 [Google Scholar]
  14. M. Sukkar, D. Kumar, and J. Sindha, ‘Real-Time Pedestrians Detection by YOLOv5’, in 2021 12th International Conference on Computing Communication and Networking Technologies, ICCCNT 2021, 2021. doi: 10.1109/ICCCNT51525.2021.9579808. [Google Scholar]
  15. W. Boyuan and W. Muqing, ‘Study on Pedestrian Detection Based on an Improved YOLOv4 Algorithm’, in 2020 IEEE 6th International Conference on Computer and Communications (ICCC), 2020, pp. 1198–1202. doi: 10.1109/ICCC51575.2020.9344983. [Google Scholar]
  16. Y. Tian, P. Luo, X. Wang, and X. Tang, ‘Deep Learning Strong Parts for Pedestrian Detection’, in 2015 IEEE International Conference on Computer Vision (ICCV), 2015, pp. 1904–1912. doi: 10.1109/ICCV.2015.221. [Google Scholar]
  17. S. Zhang, J. Yang, and B. Schiele, ‘Occluded Pedestrian Detection Through Guided Attention in CNNs’, in 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018, pp. 6995–7003. doi: 10.1109/CVPR.2018.00731. [Google Scholar]
  18. M.-L. Li, G.-B. Sun, and J.-X. Yu, ‘A Pedestrian Detection Network Model Based on Improved YOLOv5’, Entropy, vol. 25, no. 2, 2023, doi: 10.3390/e25020381. [Google Scholar]
  19. G. Li, Y. Yang, and X. Qu, ‘Deep Learning Approaches on Pedestrian Detection in Hazy Weather’, IEEE Transactions on Industrial Electronics, vol. 67, no. 10, pp. 8889–8899, 2020, doi: 10.1109/TIE.2019.2945295. [CrossRef] [Google Scholar]
  20. Z. Wang, S. Zhu, Y. Li, and Z. Cui, ‘Convolutional neural network based deep conditional random fields for stereo matching’, Journal of Visual Communication and Image Representation, vol. 40, pp. 739–750, 2016, doi: https://doi.org/10.1016/j.jvcir.2016.08.022. [CrossRef] [Google Scholar]
  21. Q. Jia, X. Wan, B. Hei, and S. Li, ‘DispNet Based Stereo Matching for Planetary Scene Depth Estimation Using Remote Sensing Images’, in 2018 10th IAPR Workshop on Pattern Recognition in Remote Sensing (PRRS), 2018, pp. 1–5. doi: 10.1109/PRRS.2018.8486195. [Google Scholar]
  22. A. Kendall et al., ‘End-to-End Learning of Geometry and Context for Deep Stereo Regression’, in 2017 IEEE International Conference on Computer Vision (ICCV), 2017, pp. 66–75. doi: 10.1109/ICCV.2017.17. [Google Scholar]
  23. G. Yang, J. Manela, M. Happold, and D. Ramanan, ‘Hierarchical Deep Stereo Matching on High-Resolution Images’, Jun. 2019, pp. 5510–5519. doi: 10.1109/CVPR.2019.00566. [Google Scholar]
  24. T.-Y. Lin et al., ‘Microsoft COCO: Common Objects in Context’, in Computer Vision – ECCV 2014, D. Fleet, T. Pajdla, B. Schiele, and T. Tuytelaars, Eds., Cham: Springer International Publishing, 2014, pp. 740–755. [CrossRef] [Google Scholar]
  25. G.-S. Hong and B.-G. Kim, ‘A local stereo matching algorithm based on weighted guided image filtering for improving the generation of depth range images’, Displays, vol. 49, pp. 80–87, 2017, doi: https://doi.org/10.1016/j.displa.2017.07.006. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.