Open Access
Issue |
EPJ Web Conf.
Volume 330, 2025
The 5th International Conference on Electrical Sciences and Technologies in the Maghreb (CISTEM 2024)
|
|
---|---|---|
Article Number | 05005 | |
Number of page(s) | 5 | |
Section | Power Quality Monitoring and Fault Diagnostic | |
DOI | https://doi.org/10.1051/epjconf/202533005005 | |
Published online | 30 June 2025 |
- A. Slalmi, H. Chaibi, A. Chehri, R. Saadane, G. Jeon, Toward 6g: Understanding network requirements and key performance indicators, Transactions on Emerging Telecommunications Technologies 32, e4201 (2021). [CrossRef] [Google Scholar]
- Y. Li, L.J. Cimini, N.R. Sollenberger, Robust channel estimation for ofdm systems with rapid dispersive fading channels, IEEE Transactions on communications 46, 902 (1998). [CrossRef] [Google Scholar]
- M. Soltani, V. Pourahmadi, A. Mirzaei, H. Sheikhzadeh, Deep learning-based channel estimation, IEEE Communications Letters 23, 652 (2019). [CrossRef] [Google Scholar]
- C. Dong, C.C. Loy, K. He, X. Tang, Image super-resolution using deep convolutional networks, IEEE Transactions on Pattern Analysis and Machine Intelligence 38, 295 (2016). 10.1109/TPAMI.2015.2439281 [CrossRef] [PubMed] [Google Scholar]
- K. Zhang, W. Zuo, Y. Chen, D. Meng, L. Zhang, Beyond a gaussian denoiser: Residual learning of deep cnn for image denoising, IEEE Transactions on Image Processing 26, 3142–3155 (2017). 10.1109/tip.2017.2662206 [CrossRef] [Google Scholar]
- M. Soltani, V. Pourahmadi, H. Sheikhzadeh, Pilot pattern design for deep learning-based channel estimation in ofdm systems, IEEE Wireless Communications Letters 9, 2173 (2020). 10.1109/LWC.2020.3016603 [CrossRef] [Google Scholar]
- L. Li, H. Chen, H.H. Chang, L. Liu, Deep residual learning meets ofdm channel estimation, IEEE Wireless Communications Letters 9, 615 (2020). 10.1109/LWC.2019.2962796 [CrossRef] [Google Scholar]
- D. Luan, J. Thompson, Low complexity channel estimation with neural network solutions, in WSA 2021; 25th International ITG Workshop on Smart Antennas (VDE, 2021), pp. 1–6 [Google Scholar]
- A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A.N. Gomez, L. Kaiser, I. Polosukhin, Attention is all you need (2023), 1706.03762 [Google Scholar]
- Z. Chen, F. Gu, R. Jiang, Channel Estimation Method Based on Transformer in High Dynamic Environment, in 2020 International Conference on Wireless Communications and Signal Processing (WCSP) (2020), pp. 817–822 [Google Scholar]
- D. Luan, J. Thompson, Attention based neural networks for wireless channel estimation, in 2022 IEEE 95th Vehicular Technology Conference:(VTC2022-Spring) (IEEE, 2022), pp. 1–5 [Google Scholar]
- Y.R. Zheng, C. Xiao, Mobile speed estimation for broadband wireless communications over rician fading channels, IEEE Transactions on Wireless Communications 8, 1 (2009). 10.1109/T-WC.2009.070140 [CrossRef] [Google Scholar]
- H. Friis, A note on a simple transmission formula, Proceedings of the IRE 34, 254 (1946). 10.1109/JR-PROC.1946.234568 [CrossRef] [Google Scholar]
- S. Zhu, T.S. Ghazaany, S.M.R. Jones, R.A. Abd-Alhameed, J.M. Noras, T. Van Buren, J. Wilson, T. Suggett, S. Marker, Probability distribution of rician k-factor in urban, suburban and rural areas using real-world captured data, IEEE Transactions on Antennas and Propagation 62, 3835 (2014). 10.1109/TAP.2014.2318072 [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.