Open Access
Issue
EPJ Web Conf.
Volume 332, 2025
The 8th International Conference on Physics, Mathematics and Statistics (ICPMS2025)
Article Number 01005
Number of page(s) 8
DOI https://doi.org/10.1051/epjconf/202533201005
Published online 09 July 2025
  1. X.Y. Lin, T. Zhang, Almost global existence for the 3D Prandtl boundary layer equa- tions, Acta Appl. Math. 169, 383 (2020). [CrossRef] [Google Scholar]
  2. W.X. Li, N. Masmoudi, T. Yang, Well-posedness in Gevrey function space for 3D Prandtl equations without structural assumption, Comm. Pure Appl. Math. 75, 1755 (2022). [CrossRef] [Google Scholar]
  3. W.X. Li, T. Yang, Well-posedness of the MHD boundary layer system in Gevrey func- tion space without structural assumption, SIAM J. Math. Anal. 53, 3236 (2021). [Google Scholar]
  4. X.Y. Lin, T. Zhang, Local well-posedness for 2D incompressible magneto-micropolar boundary layer system, Appl. Anal. 100, 206 (2021). [CrossRef] [Google Scholar]
  5. L.T. Xue, Wellposedness and zero microrotation viscosity limit of the 2D micropolar fluid equations, Math. Methods Appl. Sci. 34, 1760 (2011). [Google Scholar]
  6. L. Zou, X.Y. Lin, Uniform regularity and vanishing viscosity limit for the incompress- ible non-resistive magneto-micropolar equations, Appl. Anal. 102, 3549 (2023). [CrossRef] [Google Scholar]
  7. X.Y. Lin, C.J. Liu, T. Zhang, Magneto-micropolar boundary layers theory in Sobolev spaces without monotonicity: well-posedness and convergence theory, Calc. Var. Partial Differential Equations 63, Paper No. 76 (2024). [Google Scholar]
  8. C.J. Liu, D.H. Wang, F. Xie, T. Yang, Magnetic effects on the solvability of 2D MHD boundary layer equations without resistivity in Sobolev spaces, J. Funct. Anal. 279, 108637, 45 (2020). [Google Scholar]
  9. C.J. Liu, F. Xie, T. Yang, MHD boundary layers theory in Sobolev spaces without mono- tonicity I: Well-posedness theory, Comm. Pure Appl. Math. 72, 63 (2019). [CrossRef] [Google Scholar]
  10. C.J. Liu, F. Xie, T. Yang, A note on the ill-posedness of shear flow for the MHD bound- ary layer equations, Sci. China Math. 61, 2065 (2018). [Google Scholar]
  11. C.J. Liu, F. Xie, T. Yang, Justification of Prandtl ansatz for MHD boundary layer, SIAM J. Math. Anal. 51, 2748 (2019). [Google Scholar]
  12. J.L. Chen, R. Xu, Gevrey well-posedness of the MHD boundary layer system with temperature, Nonlinear Anal. Real World Appl. 73, Paper No. 103897, 32 (2023). [Google Scholar]
  13. X.Y. Lin, T. Zhang, Almost global existence for 2D magnetohydrodynamics boundary layer system, Math. Methods Appl. Sci. 41, 7530 (2018). [Google Scholar]
  14. S.A. Khan, A. Razaq, A. Alsaedi, T. Hayat, Modified thermal and solutal fluxes through convective flow of reiner-rivlin material, Energy (2023). [Google Scholar]
  15. T. Hayat, A. Alsaedi, A. Razaq, S.A. Khan, Hark formulation for entropy optimized convective flow beyond constant thermophysical properties, Case Studies in Thermal Engineering (2024). [Google Scholar]
  16. S.A. Khan, A. Razaq, T. Hayat, Sat formulation for entropy generated hybrid nanoma- terial flow: Modified cattaneo-christov analysis, Results in Engineering (2024). [Google Scholar]
  17. T. Hayat, A. Razzaq, S.A. Khan, A. Razaq, Tasa formulation for nonlinear radiative flow of walter-b nanoliquid invoking microorganism and entropy generation, Results in Engineering (2024). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.