Open Access
Issue
EPJ Web Conf.
Volume 332, 2025
The 8th International Conference on Physics, Mathematics and Statistics (ICPMS2025)
Article Number 01006
Number of page(s) 8
DOI https://doi.org/10.1051/epjconf/202533201006
Published online 09 July 2025
  1. Chen, Q., Opportunities and Prospects for the Sustainable Development of the Greater Bay Area, 21st Century Business Herald. (12/14/2022) [Google Scholar]
  2. Matoušek, J., Understanding and Using Linear Programming, Springer. (2007) [Google Scholar]
  3. Thomopoulos, N. T., Essentials of Monte Carlo Simulation, Springer. (2013) [Google Scholar]
  4. Dongguan Statistics Bureau, National Bureau of Statistics Dongguan Survey Team. Dongguan Statistical Yearbook. (2022) [Google Scholar]
  5. Dongguan Forestry Bureau, Ecological Status Report. (2019) [Google Scholar]
  6. Babonneau, F, Caramanis, M, Haurie, A, A linear programming model for power distribution with demand response and variable renewable energy, Applied Energy, 83- 95, (2016) doi:10.1016/j.apenergy.2016.08.028. [Google Scholar]
  7. Batur, M. E., Cihan, A., Korucu, M. K., Bektas, N.&Keskinler, B., A mixed integer linear programming model for long-term planning of municipal solid waste management systems: Against restricted mass balances, Waste Management, 105:211-222. (Mar 15 2020) doi: 10.1016/j.wasman.2020.02.003. [Google Scholar]
  8. Liu, Y., Tu, Y., Zhang, Z., The row pivoting method for linear programming, Omega 100, 102354, (April 2021) doi:0.1016/j.omega.2020.102354. [Google Scholar]
  9. Hayati, M. et al., Optimization of Monte Copper Recovery from Electronic Waste Using Response Surface Methodology and Monte Carlo Simulation under Uncertainty, J. of Material Cycles and Waste Management, 25:2121-220, (2023) doi:10.1007/s10163-022- 01526-2. [Google Scholar]
  10. Mavrantzas, V. G. et al., Using Monte Carlo to Simulate Complex Polymer Systems: Recent Progress and Outlook, Frontier in Physics, 9:661367, (2021) doi: 10.3389/fphy.2021.661367. [Google Scholar]
  11. Zhang, H., Huang, Y. J., Lin, M., Yang, Z. J., Effects of fibre orientation on tensile properties of ultra high performance fibre reinforced concrete based on meso-scale Monte Carlo simulations, Composite Structures, 287, 115331, (2022) doi:10.1016/j.compstruct.2022.115331. [CrossRef] [Google Scholar]
  12. Chen, J. et al., A Monte Carlo Model of Gas-Liquid-Hydrate Three-phase Coexistence Constrained by Pore Geometry in Marine Sediments, Marine and Petroleum Geology, Frontier in Earth Science 8, (2021) doi.org/10.3389/feart.2020.600733. [Google Scholar]
  13. Li S. et al., Monte Carlo Simulation of Tensile Strength of Concrete Reinforced with Chemically Treated Coir Fibers, Construction and Building Materials, (2020) doi:10.1016/j.conbuildmat.2019.117197. [Google Scholar]
  14. Palin, E. J., Harrison, R. J., A computational investigation of cation ordering phenomena in the binary spinel systemMgAl₂O₄FeAl₂O₄, Mineralogical Magazine 71(6):611-624, (2007) doi:10.1180/minmag.2007.071.6.611. [Google Scholar]
  15. Li, X., Liu, K., Sha, Y., Yang, J., Hong, Z., “Experimental and numerical investigation on rock fracturing in tunnel contour blasting under initial stress,” International Journal of Impact Engineering, 104844. (March 2024) [Google Scholar]
  16. Lei, H. et al., “EHD turbulent flow and Monte Carlo Simulation for Particle Changing and Tracing in a Wire-plate Electrostatic Precipitator,” Journal of Electrostatics, 66, 3-4, 30-141, (2008) doi: 10.1016/j.elstat.2007.11.001. [Google Scholar]
  17. Lih-jier Young, “Numerical Solution of Optimal Departure Frequency of Taipei TMS,” 4th International Conference on Manufacturing Optimization, (2016) doi:10.1088/1757-899X/131/1/012024 [Google Scholar]
  18. Lih-jier Young, “Remaining Life Assessment of Low-pressure Turbine Rotor Using Monte Carlo Simulation,” Journal of Testing and Evaluation, 639-647, (2014) doi: 10.1520/JET20130016. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.