Open Access
Issue
EPJ Web Conf.
Volume 332, 2025
The 8th International Conference on Physics, Mathematics and Statistics (ICPMS2025)
Article Number 01011
Number of page(s) 9
DOI https://doi.org/10.1051/epjconf/202533201011
Published online 09 July 2025
  1. R. Hanbury Brown, R.Q. Twiss, A test of a new type of stellar interferometer on Sirius. Nature. 178, 1046 (1956) [Google Scholar]
  2. H. J. Kimble, M. Dagenais, L. Mandel. Photon antibunching in resonance fluorescence. Phys. Rev. Lett. 39, 691 (1977) [Google Scholar]
  3. A. Imamoḡlu, H. Schmidt, G. Woods, et al. Strongly interacting photons in a nonlinear cavity. Phys. Rev. Lett. 79, 1467 (1977) [Google Scholar]
  4. C. Hamsen, K. N. Tolazzi, T. Wilk, et al. Two-Photon Blockade in an Atom-Driven Cavity QED System. Christoph. Phys. Rev. Lett, 118, 133604 (2017) [CrossRef] [PubMed] [Google Scholar]
  5. H. Z. Shen, Y. H. Zhou, H. D. Liu, et al. Exact optimal control of photon blockade with weakly nonlinear coupled cavities. Opt. Express. 23, 32835 (2015) [Google Scholar]
  6. H. Z. Shen, C. Shang, Y. H. Zhou, et al. Unconventional single-photon blockade in non- Markovian systems. Phys. Rev. A. 98, 023856 (2018) [Google Scholar]
  7. Z. G. Lu, Y. Wu, Chiral interaction induced near-perfect photon blockade. Phys. Rev. Lett, 134, 013602(2025) [Google Scholar]
  8. R. Huang, A Miranowicz, J. Q. Liao, et al. Nonreciprocal Photon Blockade. Phys. Rev. Lett, 121, 153601 (2018) [Google Scholar]
  9. S. Chakram, K. He, A.V. Dixit, et al. Multimode photon blockade. Nat. Phys, 18, 879 (2022) [Google Scholar]
  10. H. Y. Lin, H. Yang, X. Q. Wang, et al. Realization of the unconventional photon blockade based on a three-wave mixing system. Opt. Express. 29, 8235 (2021) [Google Scholar]
  11. T. Mao, Z. H. Yao, H. Yang, The photon blockade in a three-wave mixing system coupled with a quantum dot. Phys Scr. 99, 055107(2024) [Google Scholar]
  12. L. Tian, H. L. Carmichael. Quantum trajectory simulations of two-state behavior in an optical cavity containing one atom. Phys. Rev. A. 46, R6801 (1992) [Google Scholar]
  13. M. J. Werner, A. Imamoḡlu, Photon-photon interactions in cavity electromagnetically induced transparency. Phys. Rev. A. 61, 011801 (1999) [Google Scholar]
  14. R. J. Brecha, P. R. Rice, M. Xiao, N two-level atoms in a driven optical cavity: Quantum dynamics of forward photon scattering for weak incident fields. Phys. Rev. A. 59, 2392 (1999) [Google Scholar]
  15. P. Rabl, Photon blockade effect in optomechanical systems. Phys. Rev. Lett. 107, 063601 (2011) [Google Scholar]
  16. A. Nunnenkamp, K. Borkje, S. M. Girvin, Single-Photon optomechanics. Phys. Rev. Lett, 107, 063602 (2011) [Google Scholar]
  17. X. W. Xu, Y. J. Li, and Y. X. Liu. Photon-induced tunneling in optomechanical systems. Phys. Rev. A. 87.025803(2012) [Google Scholar]
  18. J. Q. Liao, J, and F. Nori. Photon blockade in quadratically coupled optomechanical systems. Phys. Rev. A. 88. 023853(2013) [Google Scholar]
  19. K. M. Birnbaum, A. Boca, R. Miller. et al. Photon blockade in an optical cavity with one trapped atom. Nature. 436, 87 (2005) [Google Scholar]
  20. Z. X. Wang, H. Yang, X. Q. Wang, et al., Conventional photon blockade in a four-wave mixing system with Kerr nonlinearity. Phys. Scripta. 98, 035108 (2023) [Google Scholar]
  21. A. Majumdar, D. Gerace, Single-photon blockade in doubly resonant nanocavities with second-order nonlinearity. Phys. Rev. B. 87, 235319 (2013) [Google Scholar]
  22. H. Z. Shen, Y. H. Zhou, X. X. Yi, Quantum optical diode with semiconductor microcavities. Phys. Rev. A. 90, 023849 (2014) [Google Scholar]
  23. A. J. Hoffman, S. J. Srinivasan, S. Schmidt, et al. Dispersive photon blockade in a superconducting circuit. Phys. Rev. Lett. 107, 053602 (2011) [Google Scholar]
  24. Y. X. Liu, X. W. Xu, A. Miranowicz, et al. From blockade to transparency: Controllable photon transmission through a circuit-QED system. Phys. Rev. A. 89, 043818 (2014) [Google Scholar]
  25. T. C. H. Liew, V. Savona, Single photons from coupled quantum modes. Phys. Rev. Lett. 104, 183601 (2010) [Google Scholar]
  26. H. J. Carmichael, Photon antibunching and squeezing for a single atom in a resonant cavity. Phys. Rev. Lett. 55, 2790 (1985) [Google Scholar]
  27. M. Bamba, A. Imamoglu, I. Carusotto, et al. Origin of strong photon antibunching in weakly nonlinear photonic molecules. Phys. Rev. A. 83, 021802 (2011) [Google Scholar]
  28. H. Flayac, V. Savona, Unconventional photon blockade. Phys. Rev. A. 96, 053810 (2017) [Google Scholar]
  29. X. W. Xu, Y. J. Li, Antibunching photons in a cavity coupled to an optomechanical system. J. Phys. B: At. Mol. Opt. Phys. 46, 035502 (2013) [Google Scholar]
  30. A. Majumdar, M. Bajcsy, A. Rundquist, et al. Loss-enabled sub-poissonian light generation in a bimodal nanocavity. Phys. Rev. Lett. 79, 1467 (2012) [Google Scholar]
  31. W. Zhang, Z. Y. Yu, Y. M. Liu. et al. Optimal photon antibunching in a quantum-dot- bimodal-cavity system. Phys. Rev. A. 89, 043832 (2014) [Google Scholar]
  32. Y. Wang, W. Verstraelen, B. L. Zhang, et al. Giant enhancement of unconventional photon blockade in a dimer chain. Phys. Rev. Lett. 127, 240402 (2021) [Google Scholar]
  33. X. F. Qiao, Z. H. Yao, H. Yang, Strongly enhanced photon-pair blockade with three- wave mixing by quantum interference. Phys. Rev. A, 110, 053702(2024) [Google Scholar]
  34. C. Vaneph, A. Morvan, G. Aiello, et al. Observation of the unconventional photon blockade in the microwave domain. Phys. Rev. Lett. 121, 043602 (2018) [Google Scholar]
  35. H. J. Snijders, J. A. Frey, J. Norman, et al. Observation of the unconventional photon blockade. Phys. Rev. Lett. 121, 043601 (2018) [Google Scholar]
  36. S. M. Tan, A computational toolbox for quantum and atomic optics. J. Opt. B. 1, 424 (1999) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.