Open Access
Issue
EPJ Web Conf.
Volume 333, 2025
XLVI Symposium on Nuclear Physics 2025
Article Number 01007
Number of page(s) 6
Section Nuclear Structure and Reactions
DOI https://doi.org/10.1051/epjconf/202533301007
Published online 01 August 2025
  1. T. Udagawa, T. Tamura, Heavy-ion subbarrier fusion in terms of the direct reaction technique. Phys. Rev. C 29, 1922, (1984). https://doi.org/10.1103/physrevc.29.1922 [Google Scholar]
  2. T. Udagawa, et al., Direct reaction description of sub- and above-barrier fusion of heavy ions. Phys. Rev. C 32, 124, (1985). https://doi.org/10.1103/physrevc.32.124 [Google Scholar]
  3. W. Y. So, et al., Extended optical model analyses of elastic scattering and fusion cross sections for the 6Li + 208Pb system at near-Coulomb-barrier energies using a folding potential,. Phys. Rev. C 75, 024610, (2007). https://doi.org/10.1103/PhysRevC.75.024610 [Google Scholar]
  4. W. Y. So, et al., Extended optical model analyses of elastic scattering and fusion cross section data for the 7Li + 208Pb system at near-Coulomb-barrier energies using a folding potential. Phys. Rev. C 76, 024613, (2007). https://doi.org/10.1103/PhysRevC.76.024613 [Google Scholar]
  5. W. Y. So, et al., Extended optical model analyses of elastic scattering and fusion cross section data for the 12C + 208Pb system at near-Coulomb-barrier energies by using a folding potential. Phys. Rev. C 77, 024609, (2008). https://doi.org/10.1103/PhysRevC.77.024609 [Google Scholar]
  6. W. Y. So, et al., Characteristics of the polarization part of the optical potential for a weakly bound projectile, 9Be. Phys. Rev. C 81, 047604, (2010). https://doi.org/10.1103/PhysRevC.81.047604 [Google Scholar]
  7. F. Torabi, et al., Systematic study of elastic scattering and fusion induced by weakly bound 6Li on medium mass targets. Threshold anomalies. Nucl. Phys. A 994, 121661, (2020). https://doi.org/10.1016/j.nuclphysa.2019.121661 [Google Scholar]
  8. E. F. Aguilera, et al., Simultaneous analysis of elastic scattering and fusion in 6He+64Zn: A transition in direct reaction mechanisms, striking threshold anomalies, and halo effects. Phys. Rev. C 104, 054612, (2021). https://doi.org/10.1103/physrevc.104.054612 [Google Scholar]
  9. F. Torabi, et al., Threshold anomalies in 9Be + 12C. Nucl. Phys. A 1041, 122793, (2024). https://doi.org/10.1016/j.nuclphysa.2023.122793 [Google Scholar]
  10. C. Y. Wong, Interaction Barrier in Charged-Particle Nuclear Reactions. Phys. Rev. Lett. 31, 766, (1973). https://doi.org/10.1103/PhysRevLett.31.766 [Google Scholar]
  11. M. A. Nagarajan, et al., Dispersion relation and the low-energy behavior of the heavy-ion optical potential. Phys. Rev. Lett. 54, 1136, (1985). https://doi.org/10.1103/PhysRevLett.54.1136 [Google Scholar]
  12. G. R. Satchler and W. G. Love, Folding model potentials from realistic interactions for heavy-ion scattering. Phys. Rep 55, 183, (1979). https://doi.org/10.1016/0370-1573(79)90081-4 [Google Scholar]
  13. N. Keeley, et al. Optical model analyses of 6,7Li + 208Pb elastic scattering near the Coulomb barrier. Nucl. Phys. A 571, 326, (1994). https://doi.org/10.1016/0370-1573(79)90081-4 [Google Scholar]
  14. L. C. Chamon, et al., Toward a global description of the nucleus-nucleus interaction. Phys. Rev. C 66, 014610, (2002). https://doi.org/10.1103/PhysRevC.66.014610 [Google Scholar]
  15. I. J. Thompson, Coupled reaction channels calculations in nuclear physics. Comp. Phys. Rep. 7, 167, (1988). https://doi.org/10.1016/0167-7977(88)90005-6 [Google Scholar]
  16. A. Di Pietro, et al., Reactions induced by the halo nucleus 6He at energies around the Coulomb barrier. Phys. Rev. C 69, 044613, (2004). https://doi.org/10.1103/physrevc.69.044613 [Google Scholar]
  17. J. P. Fernández-García, et al., Breakup mechanisms in the 6He + 64Zn reaction at near-barrier energies. Phys. Rev. C 99, 054605, (2019). https://doi.org/10.1103/physrevc.99.054605 [Google Scholar]
  18. M. Hugi, et al., Fusion and direct reactions for strongly and weakly bound projectiles. Nucl. Phys. A 368, 173, (1981). https://doi.org/10.1016/0375-9474(81)90739-9 [Google Scholar]
  19. M. S. Zisman, et al., Dominance of strong absorption in 9Be + 28Si elastic scattering. Phys. Rev. C 21, 2398 (1980). https://doi.org/10.1103/physrevc.21.2398 [Google Scholar]
  20. R. A. Broglia, Heavy ion reactions: The elementary processes, parts I&II (CRC Press, Florida, 2004) 524. [Google Scholar]
  21. P. H. Barker, et al., One-neutron transfer reactions with beryllium, carbon and oxygen nuclei. Nucl. Phys. A 155, 401, (1970). https://doi.org/10.1016/0375-9474(70)90903-6 [Google Scholar]
  22. E. Ungricht, et al., Elastic scattering of 9Be on light target nuclei. Nucl. Phys. A 313, 376, (1979). https://doi.org/10.1016/0375-9474(79)90507-4 [Google Scholar]
  23. L. Jarczyk, et al., Large angle elastic scattering of 9Be ions on carbon isotopes. Nucl. Phys. A 316, 139, (1979). https://doi.org/10.1016/0375-9474(79)90676-6 [Google Scholar]
  24. R. A. N. Oliveira, et al., Study of 9Be + 12C elastic scattering at energies near the Coulomb barrier. Nucl. Phys. A 856, 46, (2011). https://doi.org/10.1016/j.nuclphysa.2011.02.005 [Google Scholar]
  25. R. Bock, et al., 14N-induzierte transfer-reaktionen in 9Be von 20 bis 30 MeV. Nucl. Phys. 70, 481, (1965). https://doi.org/10.1016/0029-5582(65)90449-9 [Google Scholar]
  26. J. F. Mateja, et al., Fusion cross sections for four heavy-ion entrance channels leading to the 23Na compound nucleus. Phys. Rev. C 30, 134, (1984). https://doi.org/10.1103/physrevc.30.134 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.