Open Access
Issue
EPJ Web Conf.
Volume 333, 2025
XLVI Symposium on Nuclear Physics 2025
Article Number 03001
Number of page(s) 7
Section Facilities, Instrumentation and Applications
DOI https://doi.org/10.1051/epjconf/202533303001
Published online 01 August 2025
  1. Kutschera, W. Applications of accelerator mass spectrometry. International Journal of Mass Spectrometry 349-350, 203–218 (2013). https://doi.org/10.1016/j.ijms.2013.05.023 [Google Scholar]
  2. Wallner, A. et al. Nuclear astrophysics and AMS- Probing nucleosynthesis in the lab, Nucl. Instrum. Methods Phys. Res., Sect. B 268, (7-8) 1277–1282 (2010). https://doi.org/10.1016/j.nimb.2009.10.152. [Google Scholar]
  3. Marín-Lámbarri, D. J. et al. Measurement of the thermal neutron capture cross section by 9Be using the neutron flux from a nuclear research reactor and the AMS technique Phys. Rev. C 102 044601 (2020).10.1103/PhysRevC.102.044601. [Google Scholar]
  4. Limata B. et al. A new study of low-energy (p,γ) resonances on magnesium isotopes, Phys. Rev. C- Nucl. Phys. 82 (1) 1–16 (2010). https://doi.org/10.1103/PhysRevC.82.015801, arXiv:1006.5281. [Google Scholar]
  5. Zhao Q. et al. Measurement of the 27Al(n,2n)26Al cross section using accelerator mass spectrometry, Chinese Phys. Lett. 15 (1) 8–9 (1998). [Google Scholar]
  6. Anderson, T. et al. Re-measurement of the 33S(α,p)36Cl cross section for early solar system nuclide enrichment, Phys. Rev. C 96 (1) 1–5 (2017). https://doi.org/10.1103/PhysRevC.96.015803. [Google Scholar]
  7. Arazi A. et al., Measurement of the 25Mg(p,γ)26Al reaction at stellar energies, New Astron. Rev. 46, 525–528 (2002). [Google Scholar]
  8. Martschini M. et al. Recent advances in AMS of 36Cl with a 3-MV tandem, in: Nucl. Instrum. Methods Phys. Res. Sect. B. 269, Elsevier B.V. 3188–3191 (2011). https://doi.org/10.1016/j.nimb.2011.04.016 [Google Scholar]
  9. Dillmann I. et al. Determination of the stellar (n,γ) cross section of 40Ca with accelerator mass spectrometry, Phys. Rev. C- Nucl. Phys. 79, (6) 1–8 (2009). https://doi.org/10.1103/PhysRevC.79.065805 [Google Scholar]
  10. Hui S.K. et al. 44Ti Atom counting for nuclear astrophysics, Nucl. Instrum. Methods Phys. Res., Sect. B 172, 642–646 (2000). https://doi.org/10.1016/S0168-583X(00)00101-4. [Google Scholar]
  11. Paul M. et al. Counting 44Ti nuclei from the 40Ca(α,γ)44Ti reaction, Nuclear Phys. A 718, 239c–242c (2003). https://doi.org/10.1016/S0375-9474(03)00720-6. [Google Scholar]
  12. Nassar H. et al. 40Ca(α,γ)44Ti Reaction in the energy regime of supernova nucleosynthesis, Phys. Rev. Lett. 96,(4) 1–4 (2006). https://doi.org/10.1103/PhysRevLett.96.041102 [Google Scholar]
  13. Coquard L. et al. Determination of the stellar (n,γ) cross section of54Fe with accelerator mass spectrometry, in: Int. Symp. Nucl. Astrophys.- Nucl. Cosm. 1–5 (2006). https://doi.org/10.22323/1.028.0274. [Google Scholar]
  14. Wallner A. et al. Precise measurement of the thermal and stellar 54Fe(n,γ)55Fe cross sections via accelerator mass spectrometry, Phys. Rev. C 96 025808 (2017). https://doi.org/10.1103/PhysRevC.96.025808. [Google Scholar]
  15. Slavkovská Z. et al. Investigation of 54Fe(n,γ)55Fe and 35Cl(n,γ)36Cl reaction cross sections at keV energies by Accelerator Mass Spectrometry, EPJ Web Conf. 232 02005 (2020). https://doi.org/10.1051/epjconf/202023202005. [Google Scholar]
  16. Rugel G. et al. Measurement of (n,γ) reaction cross sections at stellar energies for 58Ni and 78Se, Nucl. Instrum. Methods Phys. Res. B 259, 683–687 (2007). https://doi.org/10.1016/j.nimb.2007.01.206. [Google Scholar]
  17. Ludwig P. et al. Measurement of the stellar 58Ni(n,γ)59Ni cross section with AMS, Phys. Rev. C 95 (3) 035803 (2017). https://doi.org/10.1103/PhysRevC.95.035803. [Google Scholar]
  18. Dillmann I. et al. Solving the stellar 62Ni problem with AMS, Nucl. Instrum. Methods Phys. Res., Sect. B 268, 1283–1286 (2010). https://doi.org/10.1016/j.nimb.2009.10.153. [Google Scholar]
  19. Nassar, H., et al., Stellar (n,γ) cross section of 62Ni. Phys. Rev. Lett. 94, 9 (2005). https://doi.org/10.1103/PhysRevLett.94.092504. [Google Scholar]
  20. He G. Z. et al. Cross-section measurement for the 93Nb(n,2n)92gNb reaction at the neutron energy of 14.6 MeV by the AMS method, Chinese Phys. C 42 (7) 1–4 (2018). https://doi.org/10.1088/16741137/42/7/074002. [Google Scholar]
  21. Pavetich S. et al. 93Zr Developments at the Heavy Ion Accelerator Facility at ANU, Nucl. Instrum. Methods Phys. Res., Sect. B 438 (3) 77–83 (2019). https://doi.org/10.1016/j.nimb.2018.07.019 [Google Scholar]
  22. Chávez E., et al. Accelerator mass spectrometry, an ultrasensitive tool to measure cross sections for stellar nucleosynthesis. Nucl. Inst. and Met. in Phys. Res. B 526, 77–82 (2022). https://doi.org/10.1016/j.nimb.2022.06.016 [Google Scholar]
  23. Solís C. et al. A new AMS facility in Mexico. Nucl. Inst. and Met. in Phys. Res. B 331, 233 (2014). https://doi.org/10.1016/j.nimb.2014.02.015. [Google Scholar]
  24. Reza G. et al. Characterization of the new hybrid low-energy accelerator facility in Mexico. Eur. Phys. J. Plus 134:590 (2019). https://doi.org/10.1140/epjp/i2019-12950-1. [Google Scholar]
  25. Kieser, W.E. Accelerator mass spectrometry: an analytical tool with applications for a sustainable society. EPJ Techniques and Instrumentation 10, 7 (2023). https://doi.org/10.1140/epjti/s40485-023-00088-3 [Google Scholar]
  26. Synal H. A. Accelerator Mass Spectrometry: Ultra-sensitive Detection Technique of Long-lived Radionuclides. Chimia 76, 45–51 (2022). DOI: 10.2533/chimia.2021.45 [Google Scholar]
  27. Middleton, R. A negative Ion Cookbook, Department of Physics, University of Pennsylvania (1989). http://www.pelletron.com/cookbook.pdf [Google Scholar]
  28. Schiwietz, G. and Grande, P.L. Improved charge-state formulas. Nucl. Inst. and Met. in Phys. Res. B 175-177 (2001) 125–131. https://doi.org/10.1016/S0168-583X(00)00583-8 [Google Scholar]
  29. Mayer, M. SIMNRA User’s Guide, Technical Report IPP 9/133, MPI für Plasmaphysik, Garching, Germany, 1997. http://home.rzg.mpg.de/mam/index.html [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.