Open Access
| Issue |
EPJ Web Conf.
Volume 337, 2025
27th International Conference on Computing in High Energy and Nuclear Physics (CHEP 2024)
|
|
|---|---|---|
| Article Number | 01042 | |
| Number of page(s) | 8 | |
| DOI | https://doi.org/10.1051/epjconf/202533701042 | |
| Published online | 07 October 2025 | |
- I. Zurbano Fernandez et al., CERN-2020-010 (2020). 10.23731/CYRM-2020-0010 [Google Scholar]
- ATLAS Collaboration, CERN-LHCC-2015-020 (2015). [Google Scholar]
- ATLAS Collaboration, CERN-LHCC-2017-021 (2017). [Google Scholar]
- ATLAS Collaboration, CERN-LHCC-2017-005 (2017). [Google Scholar]
- ATLAS Collaboration, CERN-LHCC-2017-020 (2017). [Google Scholar]
- ATLAS Collaboration, ATLAS Inner Tracker Layout 03-00-00 (2023), https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/ITK-2023-001/ [Google Scholar]
- ATLAS Collaboration, CERN-LHCC-2022-004 (2022). [Google Scholar]
- S. Dittmeier (ATLAS TDAQ), Track reconstruction for the ATLAS Phase-II Event Filter using GNNs on FPGAs, EPJ Web Conf. 295, 02032 (2024). 10.1051/epjconf/202429502032 [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- S. Caillou et al. (ATLAS), ATLAS ITk Track Reconstruction with a GNN-based pipeline (2022), https://cds.cern.ch/record/2815578 [Google Scholar]
- M.J. Atkinson et al., ACORN, https://github.com/GNN4ITkTeam/CommonFramework [Google Scholar]
- ATLAS Collaboration, Computational Performance of the ATLAS ITk GNN Track Reconstruction Pipeline, ATL-PHYS-PUB-2024-018 (2024). [Google Scholar]
- P.W. Battaglia et al., Interaction Networks for Learning about Objects, Relations and Physics (2016), 1612.00222. [Google Scholar]
- AMD, Vitis unified software platform documentation: Embedded software development (ug1400) (2023), https://docs.xilinx.com/r/en-US/ug1400-vitis-embedded [Google Scholar]
- A. Paszke et al., Pytorch: An imperative style, high-performance deep learning library, Advances in neural information processing systems 32 (2019). [Google Scholar]
- A. Pappalardo, Xilinx/brevitas (2023), https://doi.org/10.5281/zenodo. 3333552 [Google Scholar]
- A. Pappalardo et al., QONNX: Representing Arbitrary-Precision Quantized Neural Networks, in 4th AccML at HiPEAC 2022 Conference (2022), 2206.07527 [Google Scholar]
- M. Blott et al., Finn-r: An end-to-end deep-learning framework for fast exploration of quantized neural networks, ACM TRETS 11, 1 (2018). [Google Scholar]
- ATLAS Collaboration, Approved plots for the EF Tracking project (2024), https://twiki.cern.ch/twiki/bin/view/AtlasPublic/EFTrackingPublicResults [Google Scholar]
- L. He et al., The connected-component labeling problem: A review of state-of-the-art algorithms, Pattern Recognition 70, 25 (2017). https://doi.org/10.1016/j.patcog.2017.04.018 [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.

