Open Access
Issue
EPJ Web Conf.
Volume 337, 2025
27th International Conference on Computing in High Energy and Nuclear Physics (CHEP 2024)
Article Number 01121
Number of page(s) 8
DOI https://doi.org/10.1051/epjconf/202533701121
Published online 07 October 2025
  1. A. Strandlie, R. Frühwirth, Track and vertex reconstruction: From classical to adaptive methods, Rev. Mod. Phys. 82, 1419 (2010). 10.1103/RevModPhys.82.1419 [Google Scholar]
  2. M. Aaboud et al. (ATLAS), Performance of the ATLAS Track Reconstruction Algorithms in Dense Environments in LHC Run 2, Eur. Phys. J. C 77, 673 (2017), 1704.07983. 10.1140/epjc/s10052-017-5225-7 [CrossRef] [PubMed] [Google Scholar]
  3. S. Chatrchyan et al. (CMS), Description and performance of track and primaryvertex reconstruction with the CMS tracker, JINST 9, P10009 (2014), 1405.6569. 10.1088/1748-0221/9/10/P10009 [Google Scholar]
  4. X. Ju et al. (Exa.TrkX), Performance of a geometric deep learning pipeline for HL-LHC particle tracking, Eur. Phys. J. C 81, 876 (2021), 2103.06995. 10.1140/epjc/s10052-021-09675-8 [CrossRef] [Google Scholar]
  5. C. Biscarat, S. Caillou, C. Rougier, J. Stark, J. Zahreddine, Towards a realistic track reconstruction algorithm based on graph neural networks for the HL-LHC, EPJ Web Conf. 251, 03047 (2021), 2103.00916. 10.1051/epjconf/202125103047 [Google Scholar]
  6. S. Caillou, P. Calafiura, S.A. Farrell, X. Ju, D.T. Murnane, C. Rougier, J. Stark, A. Vallier (ATLAS), Tech. rep., CERN, Geneva (2022), https://cds.cern.ch/record/2815578 [Google Scholar]
  7. K. Lieret, G. DeZoort, D. Chatterjee, J. Park, S. Miao, P. Li, High Pileup Particle Tracking with Object Condensation (2023), 2312.03823 [Google Scholar]
  8. A. Lazar et al., Accelerating the Inference of the Exa.TrkX Pipeline, J. Phys. Conf. Ser. 2438, 012008 (2023), 2202.06929. 10.1088/1742-6596/2438/1/012008 [Google Scholar]
  9. P. Calafiura, J. Chan, L. Delabrouille, B. Wang, EggNet: An Evolving Graph-based Graph Attention Network for Particle Track Reconstruction (2024), 2407.13925. [Google Scholar]
  10. S. Amrouche et al., The Tracking Machine Learning challenge : Accuracy phase (2019), 1904.06778 [Google Scholar]
  11. S. Amrouche et al., The Tracking Machine Learning Challenge: Throughput Phase, Comput. Softw. Big Sci. 7, 1 (2023), 2105.01160. 10.1007/s41781-023-00094-w [Google Scholar]
  12. M. Ester, H.P. Kriegel, J. Sander, X. Xu, A density-based algorithm for discovering clusters in large spatial databases with noise, in Proceedings of the Second International Conference on Knowledge Discovery and Data Mining (AAAI Press, 1996), KDD’96, p. 226–231 [Google Scholar]
  13. P. Veličkovic´, G. Cucurull, A. Casanova, A. Romero, P. Liò, Y. Bengio, Graph Attention Networks, in International Conference on Learning Representations (2018), https://openreview.net/forum?id=rJXMpikCZ [Google Scholar]
  14. S. Elfwing, E. Uchibe, K. Doya, Sigmoid-weighted linear units for neural network function approximation in reinforcement learning, Neural Networks 107, 3 (2018), special issue on deep reinforcement learning. https://doi.org/10.1016/j.neunet.2017.12.012 [Google Scholar]
  15. J.L. Ba, J.R. Kiros, G.E. Hinton, Layer normalization (2016), 1607.06450 [Google Scholar]
  16. A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga et al., in Advances in Neural Information Processing Systems 32, edited by H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, R. Garnett (Curran Associates, Inc., 2019), pp. 8024–8035, http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library. pdf [Google Scholar]
  17. W. Falcon, The PyTorch Lightning team, PyTorch Lightning (2019), https://github.com/Lightning-AI/lightning [Google Scholar]
  18. M.J. Atkinson, S. Caillou, P. Clafiura, C. Collard, S.A. Farrell, B. Huth, X. Ju, R. Liu, T. Minh Pham, D.c.a. Murnane et al., gnn4itk, https://github.com/GNN4ITkTeam/CommonFramework [Google Scholar]
  19. D. Kingma, J. Ba, Adam: A method for stochastic optimization (2014), 1412.6980. [Google Scholar]
  20. R.D. Team, RAPIDS: Libraries for End to End GPU Data Science (2023), https://rapids.ai [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.