Open Access
| Issue |
EPJ Web Conf.
Volume 337, 2025
27th International Conference on Computing in High Energy and Nuclear Physics (CHEP 2024)
|
|
|---|---|---|
| Article Number | 01125 | |
| Number of page(s) | 8 | |
| DOI | https://doi.org/10.1051/epjconf/202533701125 | |
| Published online | 07 October 2025 | |
- K. Fujii, Extended kalman filter, Refernce Manual 14, 41 (2013). [Google Scholar]
- E. Brondolin, E. Leogrande, D. Hynds, F. Gaede, M. Petrič, A. Sailer, R. Simoniello, Conformal tracking for all-silicon trackers at future electron–positron colliders, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 956, 163304 (2020). [Google Scholar]
- N. Braun, N. Braun, Combinatorial Kalman Filter, Combinatorial Kalman Filter and High Level Trigger Reconstruction for the Belle II Experiment pp. 117–174 (2019). [Google Scholar]
- X. Ai, C. Allaire, N. Calace, A. Czirkos, M. Elsing, I. Ene, R. Farkas, L.G. Gagnon, R. Garg, P. Gessinger et al., A common tracking software project, Computing and Software for Big Science 6, 8 (2022). [CrossRef] [Google Scholar]
- V. Bertacchi, T. Bilka, N. Braun, G. Casarosa, L. Corona, S. Cunliffe, F. Dattola, G. De Marino, M. De Nuccio, G. De Pietro et al., Track finding at Belle II, Computer Physics Communications 259 (2021). [Google Scholar]
- N. Bacchetta, J.J. Blaising, E. Brondolin, M. Dam, D. Dannheim, K. Elsener, D. Hynds, P. Janot, A. Kolano, E. Leogrande et al., CLD - A Detector Concept for the FCC-ee, https://arxiv.org/abs/1911.12230 (2019). [Google Scholar]
- F. Bedeschi, A detector concept proposal for a circular e+ e-collider, in 40th International Conference on High Energy Physics (2021), p. 819 [Google Scholar]
- X. Ju, D. Murnane, P. Calafiura, N. Choma, S. Conlon, S. Farrell, Y. Xu, M. Spiropulu, J.R. Vlimant, A. Aurisano et al., Performance of a geometric deep learning pipeline for HL-LHC particle tracking, The European Physical Journal C 81, 1 (2021). [CrossRef] [Google Scholar]
- S. Amrouche, L. Basara, P. Calafiura, V. Estrade, S. Farrell, D.R. Ferreira, L. Finnie, N. Finnie, C. Germain, V.V. Gligorov et al., The tracking machine learning challenge: accuracy phase (Springer, 2020) [Google Scholar]
- J. Brehmer, P. De Haan, S. Behrends, T.S. Cohen, Geometric algebra transformer, Advances in Neural Information Processing Systems 36 (2024). [Google Scholar]
- J. Kieseler, Object condensation: one-stage grid-free multi-object reconstruction in physics detectors, graph, and image data, The European Physical Journal C 80, 1 (2020). [CrossRef] [Google Scholar]
- K. Lieret, G. DeZoort, An Object Condensation Pipeline for Charged Particle Tracking at the High Luminosity LHC, in EPJ Web of Conferences (EDP Sciences, 2024), Vol. 295, p. 09004 [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.

