Open Access
| Issue |
EPJ Web Conf.
Volume 337, 2025
27th International Conference on Computing in High Energy and Nuclear Physics (CHEP 2024)
|
|
|---|---|---|
| Article Number | 01180 | |
| Number of page(s) | 8 | |
| DOI | https://doi.org/10.1051/epjconf/202533701180 | |
| Published online | 07 October 2025 | |
- P. Vasileva, M. Babik, S. Mckee, I. Vukotic, Analyzing, Identifying & Alerting on Network Issues. EPJ Web of Conferences 295, (2024). https://doi.org/10.1051/epjconf/202429507003 [Google Scholar]
- U. A. Usmani, I. A. Abdul Aziz, J. Jaafar, J. Watada, Deep Learning for Anomaly Detection in Time-Series Data: An Analysis of Techniques, Review of Applications, and Guidelines for Future Research. IEEE Access 12, 174564–174590 (2024). https://doi.org/10.1109/ACCESS.2024.3495819 [Google Scholar]
- M. Jin, H. Y. Koh, Q. Wen, D. Zambon, C. Alippi, G. I. Webb, I. King, S. Pan, A Survey on Graph Neural Networks for Time Series: Forecasting, Classification, Imputation, and Anomaly Detection. IEEE Transactions on Pattern Analysis and Machine Intelligence 46(12), 10466–10485 (2024). https://doi.org/10.1109/TPAMI.2024.3443141 [Google Scholar]
- Y. Wang, L. Ma, M. Zhang, S. Peng, Y. Lin, J. Zhao, Graph-Based Time-Series Decomposition for Multisource Sensors Anomaly Detection. IEEE Sensors Journal 24(21), 34930–34941 (2024). https://doi.org/10.1109/JSEN.2024.3452088 [Google Scholar]
- G. P. Zhang, Time series forecasting using a hybrid ARIMA and neural network model. Neurocomputing 50, 159–175 (2003). [CrossRef] [Google Scholar]
- R. Jiang, Z. Wang, J. Yong, P. Jeph, Q. Chen, Y. Kobayashi, X. Song, S. Fukushima, T. Suzumura, Spatio-temporal meta-graph learning for traffic forecasting. In Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence and Thirty-Fifth Conference on Innovative Applications of Artificial Intelligence and Thirteenth Symposium on Educational Advances in Artificial Intelligence, AAAI’23/IAAI’23/EAAI’23, 907 (2023). https://doi.org/10.1609/aaai.v37i7.25976 [Google Scholar]
- A. Deng, B. Hooi, Graph neural network-based anomaly detection in multivariate time series. In Proceedings of the AAAI Conference on Artificial Intelligence, 35(5), 4027–4035 (2021). [Google Scholar]
- W. Duan, X. He, Z. Zhou, L. Thiele, H. Rao, Localised Adaptive Spatial-Temporal Graph Neural Network. In Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD’23, 448–458 (2023). https://doi.org/10.1145/3580305. 3599418 [Google Scholar]
- L. Zeng, S. Ye, X. Chen, X. Zhang, J. Ren, J. Tang, Y. Yang, X. S. Sherman Shen, Edge Graph Intelligence: Reciprocally Empowering Edge Networks With Graph Intelligence. IEEE Communications Surveys & Tutorials, 1–1 (2025). https://doi.org/10.1109/COMST. 2025.3527561 [Google Scholar]
- A. Mazarei, R. Sousa, J. Mendes-Moreira, et al., Online boxplot derived outlier detection. Int J Data Sci Anal 19, 83–97 (2025). https://doi.org/10.1007/s41060-024-00559-0 [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.

