Open Access
Issue
EPJ Web Conf.
Volume 337, 2025
27th International Conference on Computing in High Energy and Nuclear Physics (CHEP 2024)
Article Number 01181
Number of page(s) 8
DOI https://doi.org/10.1051/epjconf/202533701181
Published online 07 October 2025
  1. D. Nicotra et al., A quantum algorithm for track reconstruction in the lhcb vertex detector, Journal of Instrumentation 18, P11028 (2023). 10.1088/1748-0221/18/11/P11028 [Google Scholar]
  2. C. Tüysüz et al., Hybrid quantum classical graph neural networks for particle track reconstruction, Quantum Machine Intelligence 3 (2021). 10.1007/s42484-021-00055-9 [Google Scholar]
  3. A. Zlokapa et al., Charged particle tracking with quantum annealing optimization, Quantum Machine Intelligence 3 (2021). 10.1007/s42484-021-00054-w [Google Scholar]
  4. H.L. Tang et al., qubit-adapt-vqe: An adaptive algorithm for constructing hardwareefficient ansätze on a quantum processor, PRX Quantum 2, 020310 (2021). [CrossRef] [Google Scholar]
  5. A.W. Harrow, A. Hassidim, S. Lloyd, Quantum algorithm for linear systems of equations, Physical Review Letters 103 (2009). 10.1103/physrevlett.103.150502 [Google Scholar]
  6. D. Nicotra, TrackHHL: A Quantum Computing Algorithm for Track Reconstruction at the LHCb, https://github.com/dnicotra/TrackHHL (2023), accessed: 2023-08-10 [Google Scholar]
  7. A. Javadi-Abhari et al., Quantum computing with Qiskit (2024), 2405.08810 [Google Scholar]
  8. J. Ostmeyer, Optimised trotter decompositions for classical and quantum computing, Journal of Physics A: Mathematical and Theoretical 56, 285303 (2023). 10.1088/1751-8121/acde7a [Google Scholar]
  9. M. Kucharczyk, P. Morawski, M. Witek, Tech. rep., CERN, Geneva (2014), https://cds.cern.ch/record/1756296 [Google Scholar]
  10. M. Ester et al., A density-based algorithm for discovering clusters in large spatial databases with noise, in Proceedings of the Second International Conference on Knowledge Discovery and Data Mining (AAAI Press, 1996), KDD’96, p. 226–231 [Google Scholar]
  11. A. Gilyén, Y. Su, G.H. Low, N. Wiebe, Quantum singular value transformation and beyond: exponential improvements for quantum matrix arithmetics, in Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing (ACM, 2019), STOC ’19, http://dx.doi.org/10.1145/3313276.3316366 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.