Open Access
| Issue |
EPJ Web Conf.
Volume 337, 2025
27th International Conference on Computing in High Energy and Nuclear Physics (CHEP 2024)
|
|
|---|---|---|
| Article Number | 01261 | |
| Number of page(s) | 8 | |
| DOI | https://doi.org/10.1051/epjconf/202533701261 | |
| Published online | 07 October 2025 | |
- R. Aaij et al. (LHCb collaboration), The LHCb Upgrade I, JINST 19, P05065 (2024), 2305.10515. 10.1088/1748-0221/19/05/P05065 [Google Scholar]
- LHCb Collaboration, RTA and DPA dataflow diagrams for Run 1, Run 2, and the up-graded LHCb detector (2020), LHCB-FIGURE-2020-016. [Google Scholar]
- R. Aaij et al., Allen: A high level trigger on GPUs for LHCb, Comput. Softw. Big Sci. 4, 7 (2020), 1912.09161. 10.1007/s41781-020-00039-7 [CrossRef] [PubMed] [Google Scholar]
- LHCb Collaboration, Computing Model of the Upgrade LHCb experiment (2018), LHCB-TDR-018 [Google Scholar]
- R. Aaij et al., Tesla : an application for real-time data analysis in High Energy Physics, Comput. Phys. Commun. 208, 35 (2016), 1604.05596. 10.1016/j.cpc.2016.07.022 [Google Scholar]
- T. Evans, C. Fitzpatrick, J. Horswill, An automated bandwidth division for the lhcb upgrade trigger (2025), 2502.09557. https://arxiv.org/abs/2502.09557 [Google Scholar]
- The pandas development team, pandas-dev/pandas: Pandas (2024). 10.5281/zen-odo.10537285 [Google Scholar]
- W. McKinney, Data Structures for Statistical Computing in Python, in Proceedings of the 9th Python in Science Conference (2010), pp. 56 – 61 [Google Scholar]
- M. Szyman´ski, B. Couturier (LHCb), Improvements to the LHCb software performance testing infrastructure using message queues and big data technologies, EPJ Web Conf. 214, 05014 (2019). 10.1051/epjconf/201921405014 [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- https://www.jenkins.io/, accessed 22/02/25 [Google Scholar]
- https://gitlab.cern.ch/, accessed 28/02/25 [Google Scholar]
- https://mattermost.web.cern.ch/, accessed 28/02/25 [Google Scholar]
- LHCb Collaboration, The Bandwidth of the LHCb trigger on data and simulation in Autumn 2024 (2024), LHCB-FIGURE-2024-034 [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.

