Open Access
| Issue |
EPJ Web Conf.
Volume 337, 2025
27th International Conference on Computing in High Energy and Nuclear Physics (CHEP 2024)
|
|
|---|---|---|
| Article Number | 01287 | |
| Number of page(s) | 8 | |
| DOI | https://doi.org/10.1051/epjconf/202533701287 | |
| Published online | 07 October 2025 | |
- R. Bommasani et al., On the Opportunities and Risks of Foundation Models, https://crfm.stanford.edu/report.html (2021), 2108.07258 [Google Scholar]
- Amazon Web Services, https://aws.amazon.com, last accessed on 2025-05-12 [Google Scholar]
- Google Cloud Platform, https://cloud.google.com, last accessed on 2025-05-12 [Google Scholar]
- JupyterHub, https://jupyter.org/hub, last accessed on 2025-05-12 [Google Scholar]
- K. Albertsson et al., Machine Learning in HEP Community White Paper, J. Phys. Conf. Ser. 1085, 022008 (2018), 1807.02876. 10.1088/1742-6596/1085/2/022008 [CrossRef] [Google Scholar]
- D. Ciangottini et al., Analysis Facilities White Paper, FERMILAB-PUB-24-0763-CSAID (2024), 2404.02100 [Google Scholar]
- C. Grandi et al., ICSC: The Italian National Research Centre on HPC, Big Data and Quantum computing, EPJ Web Conf. 295, 10003 (2024). 10.1051/epjconf/202429510003 [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- D. Salomoni et al., INFN and the evolution of distributed scientific computing in Italy, EPJ Web Conf. 295, 10004 (2024). 10.1051/epjconf/202429510004 [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- OpenStack, https://www.openstack.org, last accessed on 2025-05-12 [Google Scholar]
- L. Anderlini et al., ML_INFN project: Status report and future perspectives, EPJ Web Conf. 295, 08013 (2024). 10.1051/epjconf/202429508013 [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- L. Anderlini et al., Developing Artificial Intelligence in the Cloud: the AI_INFN platform, in 2nd International Workshop on Machine Learning and Quantum Computing Applications in Medicine and Physics (2024) [Google Scholar]
- Ansible, https://www.ansible.com, last accessed on 2025-05-12 [Google Scholar]
- A. Ceccanti et al., The INDIGO-Datacloud Authentication and Authorization Infrastructure, J. Phys. Conf. Ser. 898, 102016 (2017). 10.1088/1742-6596/898/10/102016 [Google Scholar]
- S.A. Weil et al., Ceph: a scalable, high-performance distributed file system, in Proceedings of the 7th Symposium on Operating Systems Design and Implementation (USENIX Association, USA, 2006), OSDI ’06, p. 307–320, ISBN 1931971471 [Google Scholar]
- BorgBackup, https://borgbackup.readthedocs.io, last accessed on 2025-05-12 [Google Scholar]
- Rados Gateway, https://docs.ceph.com/en/reef/radosgw, last accessed on 2025-05-12 [Google Scholar]
- D. Ciangottini, rclone, https://github.com/DODAS-TS/rclone (2022) [Google Scholar]
- JuiceFS, https://juicefs.com/en, last accessed on 2025-05-12 [Google Scholar]
- Redis, https://redis.io, last accessed on 2025-05-12 [Google Scholar]
- PostgreSQL, https://www.postgresql.org, last accessed on 2025-05-12 [Google Scholar]
- P. Buncic, C. Aguado Sanchez, J. Blomer, L. Franco, A. Harutyunian, P. Mato, Y. Yao, CernVM: A virtual software appliance for LHC applications, J. Phys. Conf. Ser. 219, 042003 (2010). 10.1088/1742-6596/219/4/042003 [CrossRef] [Google Scholar]
- NVIDIA GPU Operator, https://docs.nvidia.com/datacenter/cloud-native/gpu-operator/latest/index.html, last accessed on 2025-05-12 [Google Scholar]
- M. Antonacci, D. Salomoni (INFN Cloud Team), Leveraging TOSCA orchestration to enable fully automated cloud-based research environments on federated heterogeneous e-infrastructures, PoS ISGC&HEPiX2023, 020 (2023). 10.22323/1.434.0020 [Google Scholar]
- Conda, https://conda.io, last accessed on 2025-05-12 [Google Scholar]
- Apptainer, https://apptainer.org, last accessed on 2025-05-12 [Google Scholar]
- SquashFS, https://www.kernel.org/doc/Documentation/filesystems/squashfs.txt, last accessed on 2025-05-12 [Google Scholar]
- Prometheus, https://prometheus.io, last accessed on 2025-05-12 [Google Scholar]
- M. Schneppenheim, Kube eagle, https://github.com/cloudworkz/kube-eagle (2020) [Google Scholar]
- NVIDIA DCGM Exporter, https://docs.nvidia.com/datacenter/cloud-native/gpu-telemetry/latest/dcgm-exporter.html, last accessed on 2025-05-12 [Google Scholar]
- Grafana Labs, Grafana Documentation, https://grafana.com/docs, last accessed on 2025-05-12 [Google Scholar]
- Kueue, https://kueue.sigs.k8s.io, last accessed on 2025-05-12 [Google Scholar]
- Virtual Kubelet, https://virtual-kubelet.io, last accessed on 2025-05-12 [Google Scholar]
- D. Ciangottini et al., Unlocking the compute continuum: scaling out from cloud to HPC and HTC resources, in 27th International Conference on Computing in High Energy & Nuclear Physics (2024) [Google Scholar]
- B. Bockelman et al., Principles, technologies, and time: The translational journey of the HTCondor-CE, Journal of Computational Science 52, 101213 (2021), case Studies in Translational Computer Science. https://doi.org/10.1016/j.jocs.2020.101213 [Google Scholar]
- A.B. Yoo et al., SLURM: Simple Linux Utility for Resource Management, in Job Scheduling Strategies for Parallel Processing, edited by D. Feitelson, L. Rudolph, U. Schwiegelshohn (Springer Berlin Heidelberg, Berlin, Heidelberg, 2003), pp. 44–60 [Google Scholar]
- Podman, https://podman.io, last accessed on 2025-05-12 [Google Scholar]
- M. Barbetti, The flash-simulation paradigm and its implementation based on Deep Generative Models for the LHCb experiment at CERN, CERN-THESIS-2024-108 (2024) [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.

