Open Access
| Issue |
EPJ Web Conf.
Volume 337, 2025
27th International Conference on Computing in High Energy and Nuclear Physics (CHEP 2024)
|
|
|---|---|---|
| Article Number | 01356 | |
| Number of page(s) | 8 | |
| DOI | https://doi.org/10.1051/epjconf/202533701356 | |
| Published online | 07 October 2025 | |
- E. Martelli, S. Stancu, LHCOPN and LHCONE: Status and Future Evolution (2015), https://iopscience.iop.org/misc/10.1088/1742-6596/664/5/052025 [Google Scholar]
- C.M. Moreira, E. Martelli, T. Cass, NOTED: An intelligent network controller to improve the throughput of large data transfers in File Transfer Services by handling dynamic circuits (2024), publisher: EDP Sciences, https://www.epj-conferences.org/miscs/epjconf/abs/2024/05/epjconf_chep2025_07034/epjconf_chep2025_07034.html [Google Scholar]
- J. Waczyn´ska, E. Martelli, S. Vallecorsa, E. Karavakis, T. Cass, Convolutional LSTM models to estimate network traffic (2021), publisher: EDP Sciences, https://www.epj-conferences.org/miscs/epjconf/abs/2021/05/epjconf_chep2021_02050/epjconf_chep2021_02050.html [Google Scholar]
- J.F. Torres, D. Hadjout, A. Sebaa, F. Martínez-Álvarez, A. Troncoso, Deep Learning for Time Series Forecasting: A Survey (2021), publisher: Mary Ann Liebert, Inc., publishers, https://www.liebertpub.com/doi/full/10.1089/big.2020.0159 [Google Scholar]
- M. Popa, C. Grigoras, S. Vallecorsa, Predicting ALICE Grid throughput using recurrent neural networks (2023), https://iopscience.iop.org/misc/10.1088/1742-6596/2438/1/012059 [Google Scholar]
- S.H. Park, B. Kim, C.M. Kang, C.C. Chung, J.W. Choi, Sequence-to-Sequence Prediction of Vehicle Trajectory via LSTM Encoder-Decoder Architecture, in 2018 IEEE Intelligent Vehicles Symposium (IV) (2018), pp. 1672–1678, iSSN: 1931-0587, https://ieeexplore.ieee.org/abstract/document/8500658 [Google Scholar]
- B. Lim, S. Zohren, Time-series forecasting with deep learning: a survey (2021), publisher: Royal Society, https://royalsocietypublishing.org/doi/full/10. 1098/rsta.2020.0209 [Google Scholar]
- G. Hinton, R. Salakhutdinov, Reducing the Dimensionality of Data with Neural Networks (2006) [Google Scholar]
- A. Sagheer, M. Kotb, Unsupervised Pre-training of a Deep LSTM-based Stacked Autoencoder for Multivariate Time Series Forecasting Problems (2019), publisher: Nature Publishing Group, https://www.nature.com/miscs/s41598-019-55320-6 [Google Scholar]
- K. Benidis, S.S. Rangapuram, V. Flunkert, Y. Wang, D. Maddix, C. Turkmen, J. Gasthaus, M. Bohlke-Schneider, D. Salinas, L. Stella et al., Deep Learning for Time Series Forecasting: Tutorial and Literature Survey (2022), https://doi.org/10. 1145/3533382 [Google Scholar]
- A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A.N. Gomez, L. Kaiser, I. Polosukhin, Attention Is All You Need (2023), arXiv:1706.03762 [cs], http://arxiv.org/abs/1706.03762 [Google Scholar]
- I. Sutskever, O. Vinyals, Q.V. Le, Sequence to Sequence Learning with Neural Networks (2014), arXiv:1409.3215 [cs], http://arxiv.org/abs/1409.3215 [Google Scholar]
- Y. Qin, D. Song, H. Chen, W. Cheng, G. Jiang, G. Cottrell, A Dual-Stage Attention-Based Recurrent Neural Network for Time Series Prediction (2017), https://arxiv. org/abs/1704.02971v4 [Google Scholar]
- D. Bahdanau, K. Cho, Y. Bengio, Neural Machine Translation by Jointly Learning to Align and Translate (2016), arXiv:1409.0473 [cs, stat], http://arxiv.org/abs/1409.0473 [Google Scholar]
- P. Li, Y. Pei, J. Li, A comprehensive survey on design and application of autoencoder in deep learning (2023), https://www.sciencedirect.com/science/misc/pii/S1568494623001941 [Google Scholar]
- Ian Goodfellow, Yoshua Bengio, Aaron Courville, Deep Learning (MIT Press, 2016), \url{http://www.deeplearningbook.org} [Google Scholar]
- B. Cai, S. Yang, L. Gao, Y. Xiang, Hybrid variational autoencoder for time series forecasting (2023), https://www.sciencedirect.com/science/misc/pii/S0950705123008298 [Google Scholar]
- S. Ahmed, I.E. Nielsen, A. Tripathi, S. Siddiqui, R.P. Ramachandran, G. Rasool, Transformers in Time-Series Analysis: A Tutorial (2023), https://doi.org/10.1007/s00034-023-02454-8 [Google Scholar]
- T. Lin, Y. Wang, X. Liu, X. Qiu, A survey of transformers (2022), https://www. sciencedirect.com/science/misc/pii/S2666651022000146 [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.

