Open Access
Issue
EPJ Web Conf.
Volume 337, 2025
27th International Conference on Computing in High Energy and Nuclear Physics (CHEP 2024)
Article Number 01358
Number of page(s) 8
DOI https://doi.org/10.1051/epjconf/202533701358
Published online 07 October 2025
  1. O. Aberle, I. Béjar Alonso, O. Brüning, P. Fessia, L. Rossi, L. Tavian, M. Zerlauth, C. Adorisio, A. Adraktas, M. Ady et al., High-Luminosity Large Hadron Collider (HL-LHC): Technical design report, CERN Yellow Reports: Monographs (CERN, Geneva, 2020), https://cds.cern.ch/record/2749422 [Google Scholar]
  2. ATLAS Collaboration, ATLAS Software and Computing HL-LHC Roadmap (2022), https://cds.cern.ch/record/2802918 [Google Scholar]
  3. ATLAS Collaboration, ATLAS TDAQ Phase-II Upgrade: Technical Design Report (2017), ATLAS-TDR-029; CERN-LHCC-2017-020, https://cds.cern.ch/reco rd/2285584 [Google Scholar]
  4. ATLAS Collaboration, The Phase-II Upgrade of the ATLAS Trigger and Data Acquisition System - Event Filter Tracking Amendment: Technical Design Report (2022), CERN-LHCC-2022-004, ATLAS-TDR-029-ADD-1, https://cds.cern.ch/reco rd/2802799 [Google Scholar]
  5. ATLAS Collaboration, Software and computing for Run 3 of the ATLAS experiment at the LHC (2024), 2404.06335. [Google Scholar]
  6. A. Gunny, D. Rankin, J. Krupa, M. Saleem, T. Nguyen, M. Coughlin, P. Harris, E. Katsavounidis, S. Timm, B. Holzman, Hardware-accelerated Inference for Real-Time Gravitational-Wave Astronomy, Nature Astron. 6, 529 (2022), 2108.12430. 10.1038/s41550-022-01651-w [Google Scholar]
  7. T. Cai, K. Herner, T. Yang, M. Wang, M.A. Flechas, P. Harris, B. Holzman, K. Pedro, N. Tran, Accelerating Machine Learning Inference with GPUs in ProtoDUNE Data Processing, Comput. Softw. Big Sci. 7, 11 (2023), 2301.04633. 10.1007/s41781-023-00101-0 [Google Scholar]
  8. CMS Collaboration, Portable Acceleration of CMS Computing Workflows with Coprocessors as a Service, Comput. Softw. Big Sci. 8, 17 (2024), 2402.15366. 10.1007/s41781-024-00124-1 [Google Scholar]
  9. NVIDIA Corporation, Triton Inference Server: An Optimized Cloud and Edge Inferencing Solution., https://github.com/triton-inference-server/server, accessed: 2025-01-23 [Google Scholar]
  10. R. Brun, F. Rademakers, P. Canal, A. Naumann, O. Couet, L. Moneta, V. Vassilev, S. Linev, D. Piparo, G. GANIS et al., root-project/root: v6.18/02 (2019), https://do i.org/10.5281/zenodo.3895860 [Google Scholar]
  11. D. Adams, P. Calafiura, P.A. Delsart, M. Elsing, S. Farrell, K. Koeneke, A. Kraszna-223 horkay, N. Krumnack, E. Lancon, W. Lavrijsen et al. on behalf of the ATLAS Collaboration, Dual-use tools and systematics-aware analysis workflows in the atlas run-2 analysis model, Journal of Physics: Conference Series 664, 032007 (2015). 10.1088/1742-6596/664/3/032007 [Google Scholar]
  12. ATLAS Collaboration, IAthInferenceTool, https://gitlab.cern.ch/atlas/ath ena/-/blob/main/Control/AthOnnx/AthOnnxInterfaces/AthOnnxInterface s/IAthInferenceTool.h, accessed: 2025-01-24 [Google Scholar]
  13. ONNX, Open Neural Network Exchange (ONNX), https://github.com/onnx/on nx, accessed: 2023-11-08 [Google Scholar]
  14. J. Nickolls, I. Buck, M. Garland, K. Skadron, Scalable parallel programming with CUDA, in ACM SIGGRAPH 2008 Classes (Association for Computing Machinery, New York, NY, USA, 2008), SIGGRAPH ’08, ISBN 9781450378451, https://doi.org/10.1145/1401132.1401152 [Google Scholar]
  15. NVIDIA, NVIDIA TensorRT, https://developer.nvidia.com/tensorrt, accessed: 2023-11-08 [Google Scholar]
  16. oneDNN Contributors, oneAPI Deep Neural Network Library (oneDNN), https://gi thub.com/oneapi-src/oneDNN, accessed: 2024-12-15 [Google Scholar]
  17. Xilinx, AMD Vitis™ AI, https://github.com/Xilinx/Vitis-AI, accessed: 2025-01-23 [Google Scholar]
  18. ATLAS Collaboration, IOnnxRuntimeSvc, https://gitlab.cern.ch/atlas/athena/-/blob/main/Control/AthOnnx/AthOnnxInterfaces/AthOnnxInterface s/IOnnxRuntimeSvc.h, accessed: 2025-01-24 [Google Scholar]
  19. ATLAS Collaboration, IOnnxRuntimeSessionTool, https://gitlab.cern.ch/atl as/athena/-/blob/main/Control/AthOnnx/AthOnnxInterfaces/AthOnnxInt erfaces/IOnnxRuntimeSessionTool.h, accessed: 2025-01-24 [Google Scholar]
  20. W. Lampl on behalf of the ATLAS Collaboration, A new approach for atlas athena job configuration, EPJ Web Conf. 214, 05015 (2019). 10.1051/epjconf/201921405015 [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  21. NVIDIA, NVIDIA Triton Inference Server, https://docs.nvidia.com/deeplearning/triton-inference-server/user-guide/docs/index.html, accessed: 2024-05-15 [Google Scholar]
  22. R.T. Fielding, Ph.D. thesis (2000), copyright - Database copyright ProQuest LLC; Pro-Quest does not claim copyright in the individual underlying works; Last updated - 2023-02-24, https://www.proquest.com/dissertations-theses/architectura l-styles-design-network-based/docview/304591392/se-2 [Google Scholar]
  23. gRPC Authors, Remote procedure call, https://grpc.io/, accessed: 2024-12-15 [Google Scholar]
  24. M. Abadi et al., TensorFlow: A system for large-scale machine learning (2016), 1605.08695 [Google Scholar]
  25. A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga et al., Pytorch: An imperative style, high-performance deep learning library (2019), 1912.01703, https://arxiv.org/abs/1912.01703 [Google Scholar]
  26. J.D. Burleson, S. Caillou, P. Calafiura, J. Chan, C. Collard, X. Ju, D.T. Murnane, M. Neubauer, M.T. Pham, C. Rougi er et al. on behalf of the ATLAS Collaboration, Physics Performance of the ATLAS GNN4ITk Track Reconstruction Chain, ATL-SOFT-PROC-2023-047, Geneva (2023), https://cds.cern.ch/record/2882507 [Google Scholar]
  27. NVIDIA, Perf analyzer, https://docs.nvidia.com/deeplearning/triton-inference-server/archives/triton-inference-server-2310/user-guide/d ocs/user_guide/perf_analyzer.html, accessed: 2025-01-24 [Google Scholar]
  28. ATLAS Collaboration, Expected Tracking Performance of the ATLAS Inner Tracker at the HL-LHC (2019), ATL-PHYS-PUB-2019-014, https://cds.cern.ch/record/2 669540 [Google Scholar]
  29. GNN4ITk Team, A geometrical-based tracking reconstruction network, https://gi tlab.cern.ch/gnn4itkteam/acorn, accessed: 2025-01-24 [Google Scholar]
  30. X. Ju, Tracking as a service, https://github.com/xju2/tracking-as-a-servi ce/releases/tag/v1.0, accessed: 2024-12-15 [Google Scholar]
  31. The PyTorch Foundation, Torchscript, https://pytorch.org/tutorials/beginn er/Intro_to_TorchScript_tutorial.html, accessed: 2024-12-15 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.