Issue |
EPJ Web Conf.
Volume 182, 2018
6th International Conference on New Frontiers in Physics (ICNFP 2017)
|
|
---|---|---|
Article Number | 03005 | |
Number of page(s) | 6 | |
Section | Poster session | |
DOI | https://doi.org/10.1051/epjconf/201818203005 | |
Published online | 03 August 2018 |
https://doi.org/10.1051/epjconf/201818203005
Cylindrical symmetry: II. The Green's function in 3+ 1 dimensional curved space
Department of Mathematics, Indian Institute of Technology Tirupati, Renigunta Road, Tirupati 517 506, India
* E-mail: gkamath01865@gmail.com
Published online: 3 August 2018
An exact solution to the heat equation in curved space is a much sought after; this report presents a derivation wherein the cylindrical symmetry of the metric gμν in 3 + 1 dimensional curved space has a pivotal role. To elaborate, the spherically symmetric Schwarzschild solution is a staple of textbooks on general relativity; not so perhaps, the static but cylindrically symmetric ones, though they were obtained almost contemporaneously by H. Weyl, Ann. Phys. Lpz. 54, 117 (1917) and T. Levi-Civita, Atti Acc. Lincei Rend. 28, 101 (1919). A renewed interest in this subject in C.S. Trendafilova and S.A. Fulling, Eur.J.Phys. 32, 1663(2011) - to which the reader is referred to for more references - motivates this work, the first part of which (cf.Kamath, PoS (ICHEP2016) 791) reworked the Antonsen-Bormann idea - arXiv:hep-th/9608141v1 - that was originally intended to compute theheat kernel in curved space to determine - following D.McKeon and T.Sherry, Phys. Rev. D 35, 3584 (1987) - the zeta-function associated with the Lagrangian density for a massive real scalar field theory in 3 + 1 dimensional stationary curved space to one-loop order, the metric for which is cylindrically symmetric. Using the same Lagrangian density the second part reported here essentially revisits the second paper by Bormann and Antonsen - arXiv:hep 9608142v1 but relies on the formulation by the author in S. G. Kamath, AIP Conf.Proc.1246, 174 (2010) to obtain the Green's function directly by solving a sequence of first order partial differential equations that is preceded by a second order partial differential equation.
© The Authors, published by EDP Sciences 2018
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.