Issue |
EPJ Web Conf.
Volume 247, 2021
PHYSOR2020 – International Conference on Physics of Reactors: Transition to a Scalable Nuclear Future
|
|
---|---|---|
Article Number | 02016 | |
Number of page(s) | 11 | |
Section | Core Analysis Methods | |
DOI | https://doi.org/10.1051/epjconf/202124702016 | |
Published online | 22 February 2021 |
https://doi.org/10.1051/epjconf/202124702016
VALIDATION OF THE WIMS/PANTHER EMBEDDED SUPERCELL METHOD
1 EDF Energy Barnett Way, Barnwood, Gloucester, GL4 3RS, UK
2 Wood Nuclear Queen Mother Square, Poundbury, Dorset DT1 3BW, UK
3 Tractebel Engineering S.A. Boulevard Simon Bolivar 34, Brussels, Belgium
Published online: 22 February 2021
The WIMS/PANTHER Embedded Supercell Method (ESM) provides a significant improvement in prediction accuracy for radial power distributions for PWR reactors compared to the standard “two-step” approach, without the need for a significant increase in computational resource. Recent papers at PHYSOR conferences have outlined the details of the method and demonstrated its operation, and the accuracy improvements possible, by means of benchmarking calculations.
This paper applies the method to a 4-loop PWR in the U.K, and three PWRs (3-loop and 2-loop) in Belgium. Comparisons are made against measured data from the start-of-cycle physics testing performed for each cycle, and power-shape measurements collected during the cycle using a conventional “two-step” nodal reactor solution, and with the ESM. All results will be presented with the JEF2.2 nuclear data library, for ease of comparison between the methods and previously reported results, although the effects of more modern evaluations will be commented upon.
The benchmark calculations referred to above studied a challenging MOX/UO2 benchmark core akin to an SMR. The four reactors studied here include conventional UO2 only core designs and cycles with UO2/MOX mixed cores. A variety of boron-and gadolinium-based burnable absorbers are also present. The data is used to show that the method both operates successfully for real reactor problems, and delivers improvements in the prediction accuracy of measured parameters.
Key words: WIMS / PANTHER / Core / Validation / Embedded
© The Authors, published by EDP Sciences, 2021
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.