Issue |
EPJ Web Conf.
Volume 247, 2021
PHYSOR2020 – International Conference on Physics of Reactors: Transition to a Scalable Nuclear Future
|
|
---|---|---|
Article Number | 06006 | |
Number of page(s) | 10 | |
Section | Advanced Modelling and Simulation | |
DOI | https://doi.org/10.1051/epjconf/202124706006 | |
Published online | 22 February 2021 |
https://doi.org/10.1051/epjconf/202124706006
WHOLE CORE COUPLING METHODOLOGIES WITHIN WIMS
ANSWERS Software Service, Wood Nuclear Kings Point House, Queen Mother Square, Poundbury, Dorchester, DT1 3BW, UK
Published online: 22 February 2021
The ANSWERS® WIMS reactor physics code is being developed for whole core multiphysics modelling. The established neutronics capability for lattice calculations has recently been extended to be suitable for whole core modelling of Small Modular Reactors (SMRs). A whole core transport, SP3 or diffusion flux solution is combined with fuel assembly resonance shielding and pin-by-pin differential depletion. An integrated thermal hydraulic solver permits differential temperature and density variations to feedback to the neutronics calculation.
This paper presents new methodology developed in WIMS to couple the core neutronics to the integrated core thermal hydraulics solver. Two coupling routes are presented and compared using a challenging PWR SMR benchmark. The first route, called GEOM, dynamically calculates the resonance shielding and homogenisation with the whole core flux solution. The second coupling route, called CAMELOT, separates the resonance shielding and pincell homogenisation from the whole core solution via generating tabulated cross sections. Both routes can use the MERLIN homogenised pin-by-pin whole core flux solver and couple to the same integrated thermal hydraulic solver, called ARTHUR. Heterogeneous differences between the neutronics and thermal hydraulics are mapped via thermal identifiers for neutronics materials and thermal regions.
The ability for the integrated thermal hydraulic solver to call an external code via a Fortran-C-Python (FCP) interface is also summarised. This flexible external coupling permits one way coupling to an external fuel performance code or two way coupling to an external thermal hydraulic code.
Key words: WIMS / core / coupling / multi-physics
© The Authors, published by EDP Sciences, 2021
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.