Issue |
EPJ Web Conf.
Volume 247, 2021
PHYSOR2020 – International Conference on Physics of Reactors: Transition to a Scalable Nuclear Future
|
|
---|---|---|
Article Number | 06024 | |
Number of page(s) | 8 | |
Section | Advanced Modelling and Simulation | |
DOI | https://doi.org/10.1051/epjconf/202124706024 | |
Published online | 22 February 2021 |
https://doi.org/10.1051/epjconf/202124706024
HIGH-FIDELITY EX-CORE CAPABILITIES IN VERA
Oak Ridge National Laboratory P.O. Box 5800, Oak Ridge, TN 37831-6170
pandyatm@ornl.gov
kr4@ornl.gov
e32@ornl.gov
9te@ornl.gov
agm@ornl.gov
oxh@ornl.gov
cgd@ornl.gov
ggs@ornl.gov
bn7@ornl.gov
* Notice: This manuscript has been authored by UT-Battelle, LLC, under contract DE-AC05-00OR22725 with the US Department of Energy (DOE). The US government retains and the publisher, by accepting the article for publication, acknowledges that the US government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for US government purposes. DOE will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan).
Published online: 22 February 2021
High-fidelity nuclear reactor calculations have become increasingly important when considering lifetime extensions of the current nuclear fleet. The need for performing large calculations has led to development of advanced, novel methods for faster and more efficient computing system use. Under the Consortium for Advanced Simulation of Light Water Reactors (CASL), we have enabled the capability to perform high-fidelity ex-core calculations in the Virtual Environment for Reactor Applications (VERA) by coupling with the Shift Monte Carlo (MC) radiation transport package. The codes are coupled inmemory, allowing for the pin-by-pin fission source from the core simulator to be used by Shift. This unique capability allows the user to obtain both in-core and ex-core quantities by running a single simulation. Examples of ex-core calculations that can be performed include multicycle vessel fluence, detector response during reactor start-up and operation, and coupon fluence. One main advantage of the VERA ex-core capability is its flexibility and ease of use; users can select default settings with the standard VERA input for typical calculations or create their own ex-core geometry for specific cases. Also, Shift takes advantage of hybrid deterministic-MC methods to reduce variance and computational time. This paper details the full suite of VERA ex-core capabilities and provides input examples, simulation results, and computing resource use suggestions. These new capabilities have the potential to impact a wide user group in the nuclear community by enhancing and enabling high-fidelity light water reactor (LWR) ex-core calculations.
Key words: ex-core / CASL / hybrid methods
© The Authors, published by EDP Sciences, 2021
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.