Issue |
EPJ Web Conf.
Volume 247, 2021
PHYSOR2020 – International Conference on Physics of Reactors: Transition to a Scalable Nuclear Future
|
|
---|---|---|
Article Number | 06026 | |
Number of page(s) | 8 | |
Section | Advanced Modelling and Simulation | |
DOI | https://doi.org/10.1051/epjconf/202124706026 | |
Published online | 22 February 2021 |
https://doi.org/10.1051/epjconf/202124706026
MULTIPHYSICS MODELING OF PRECURSORS IN MOLTEN SALT FAST REACTORS USING PROTEUS AND Nek5000
Argonne National Laboratory 9700 South Cass Avenue, Lemont, IL 60439 USA
bofeng@anl.gov
tfei@anl.gov
dshaver@anl.gov
yjung@anl.gov
Published online: 22 February 2021
The goal of this work was to calculate the impact of the delayed neutron precursor drift in fast spectrum Molten Salt Reactors (MSRs) using coupled solutions from the neutronics code PROTEUS and the computational fluid dynamics code Nek5000. Specifically, using a multiphysics approach to solve the effective delayed neutron fraction (βeff) or delayed neutron precursor distribution for reactors with flowing fuel salts would provide valuable information for transient simulations and safety assessments. Given the multiple options for the flux solution and geometric resolution/fidelity in PROTEUS, two approaches were developed and applied to various test cases: PROTEUS-NODAL/Nek5000 and PROTEUS-SN/Nek5000. For the former, the precursors are tracked in the built-in precursor drift model in PROTEUS-NODAL, whereas in the latter, Nek5000 directly tracks the precursors. Both approaches were used to solve a single test channel problem and showed excellent agreement in the calculated βeff. Separately, a 3D hourglass-shaped core was modeled using the PROTEUS-SN/Nek5000 approach. This problem was designed to demonstrate the capability of the discrete ordinates (SN) solver and Nek5000 to model complex core designs with axially varying geometries and the ability for Nek5000 to track the precursors and calculate the resulting βeff. In addition, the Nek5000 calculations revealed the presence of recirculation zones in the hourglass design, which could lead to significant temperatures in the fuel salt and surrounding materials. These first coupled solutions show why these approaches may be necessary for not only predicting the precursor drift effect in fast MSRs but also for reactor design and performance assessments.
Key words: Multiphysics / Coupled / MSR / Precursor
© The Authors, published by EDP Sciences, 2021
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.