Issue |
EPJ Web Conf.
Volume 247, 2021
PHYSOR2020 – International Conference on Physics of Reactors: Transition to a Scalable Nuclear Future
|
|
---|---|---|
Article Number | 09020 | |
Number of page(s) | 8 | |
Section | Nuclear Data | |
DOI | https://doi.org/10.1051/epjconf/202124709020 | |
Published online | 22 February 2021 |
https://doi.org/10.1051/epjconf/202124709020
DATA ASSIMILATION APPLIED TO PRESSURISED WATER REACTORS
1 Cambridge University Engineering Department Trumpington Street, Cambridge, CB2 1PZ, UK
2 Wood Kings Point House, Queen Mother Square, Dorchester, DT1 3BW, UK
3 EDF Energy Barnett Way, Barnwood, Gloucester, GL4 3RS, UK
Published online: 22 February 2021
Best estimate plus uncertainty is the leading methodology to validate existing safety margins. It remains a challenge to develop and license these approaches, in part due to the high dimensionality of system codes. Uncertainty quantification is an active area of research to develop appropriate methods for propagating uncertainties, offering greater scientific reason, dimensionality reduction and minimising reliance on expert judgement. Inverse uncertainty quantification is required to infer a best estimate back on the input parameters and reduce the uncertainties, but it is challenging to capture the full covariance and sensitivity matrices. Bayesian inverse strategies remain attractive due to their predictive modelling and reduced uncertainty capabilities, leading to dramatic model improvements and validation of experiments. This paper uses state-of-the-art data assimilation techniques to obtain a best estimate of parameters critical to plant safety. Data assimilation can combine computational, benchmark and experimental measurements, propagate sparse covariance and sensitivity matrices, treat non-linear applications and accommodate discrepancies. The methodology is further demonstrated through application to hot zero power tests in a pressurised water reactor (PWR) performed using the BEAVRS benchmark with Latin hypercube sampling of reactor parameters to determine responses. WIMS 11 (dv23) and PANTHER (V.5:6:4) are used as the coupled neutronics and thermal-hydraulics codes; both are used extensively to model PWRs. Results demonstrate updated best estimate parameters and reduced uncertainties, with comparisons between posterior distributions generated using maximum entropy principle and cost functional minimisation techniques illustrated in recent conferences. Future work will improve the Bayesian inverse framework with the introduction of higher-order sensitivities.
Key words: Inverse Uncertainty Quantification / Data Assimilation / WIMS / PANTHER
© The Authors, published by EDP Sciences, 2021
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.