Issue |
EPJ Web Conf.
Volume 288, 2023
ANIMMA 2023 – Advancements in Nuclear Instrumentation Measurement Methods and their Applications
|
|
---|---|---|
Article Number | 10003 | |
Number of page(s) | 5 | |
Section | Current Trends in Development Radiation Detectors | |
DOI | https://doi.org/10.1051/epjconf/202328810003 | |
Published online | 21 November 2023 |
https://doi.org/10.1051/epjconf/202328810003
A new technique for quick identification of defective region inside γ-ray detector
Department of Nuclear and Atomic Physics Tata Institute of Fundamental Research, Mumbai 400005, India
Published online: 21 November 2023
The γ-ray detection efficiency of a detector decreases over time due to factors like radiation damage or an increase in the thickness of the inactive dead layer. For large γ-ray detector facilities, it is crucial to assess the health condition and performance of the inner regions of the detector crystals over time. In this study, we have introduced a method using GEANT4 simulation to detect defective regions within thick γ-ray detectors. In the experimental phase, a scanning setup was employed, comprising a single-crystal High Purity Germanium (HPGe) detector and a position-sensitive GAGG:Ce detector for coincidence measurements, using a 22Na source. The 2D images were reconstructed from the front-face and side-face scans of the single-crystal coaxial HPGe detector, employing an energy gate set at 511 keV. A position gate applied to a specific section of those 2D images allowed for the mapping of γ-ray interactions along a conical path within the HPGe detector. The methodology involved the comparison and analysis of histograms generated from various sector gates, facilitating the identification of the defective region’s position. In the GEANT4 simulation, a defective region was defined within the crystal, and that was effectively represented in the corresponding scanned image, which exhibited reduced efficiency. It’s important to note that this method’s effectiveness is restricted by the absorption profile of the 511 keV γ-ray, limiting its applicability to a depth of approximately 4 cm from the surface of the HPGe crystal. However, this approach can offer a swift and convenient method for inspecting γ-ray detectors, making it a valuable tool for the detector industry.
Key words: defective/damaged region identification of HPGe crystal / γ-ray tracking / position-sensitive GAGG / GEANT4 simulation
© The Authors, published by EDP Sciences, 2023
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.