Issue |
EPJ Web of Conf.
Volume 295, 2024
26th International Conference on Computing in High Energy and Nuclear Physics (CHEP 2023)
|
|
---|---|---|
Article Number | 09039 | |
Number of page(s) | 8 | |
Section | Artificial Intelligence and Machine Learning | |
DOI | https://doi.org/10.1051/epjconf/202429509039 | |
Published online | 06 May 2024 |
https://doi.org/10.1051/epjconf/202429509039
Transformers for Generalized Fast Shower Simulation
1 CERN, Geneva, Switzerland
2 IBM T. J. Watson Research Center, Yorktown Heights, NY USA
* e-mail: piyush.raikwar@cern.ch
Published online: 6 May 2024
Recently, transformer-based foundation models have proven to be a generalized architecture applicable to various data modalities, ranging from text to audio and even a combination of multiple modalities. Transformers by design should accurately model the non-trivial structure of particle showers thanks to the absence of strong inductive bias, better modeling of long-range dependencies, and interpolation and extrapolation capabilities. In this paper, we explore a transformer-based generative model for detector-agnostic fast shower simulation, where the goal is to generate synthetic particle showers, i.e., the energy depositions in the calorimeter. When trained with an adequate amount and variety of showers, these models should learn better representations compared to other deep learning models, and hence should quickly adapt to new detectors. In this work, we will show the prototype of a transformer-based generative model for fast shower simulation, as well as explore certain aspects of transformer architecture such as input data representation, sequence formation, and the learning mechanism for our unconventional shower data.
© The Authors, published by EDP Sciences, 2024
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.