Open Access
Issue
EPJ Web of Conferences
Volume 55, 2013
SOS 2012 – IN2P3 School of Statistics
Article Number 02004
Number of page(s) 25
Section Multivariate Analysis Tools
DOI https://doi.org/10.1051/epjconf/20135502004
Published online 01 July 2013
  1. L. Breiman, J.H. Friedman, R.A. Olshen and C.J. Stone, Classification and Regression Trees, Wadsworth, Stamford, 1984 [Google Scholar]
  2. I. Narsky, “StatPatternRecognition: A C++ Package for Statistical Analysis of High Energy Physics Data”, arXiv:physics/0507143, 2005. [Google Scholar]
  3. C. Gini, “Variabilità e Mutabilità” (1912), reprinted in Memorie di Metodologica Statistica, edited by E. Pizetti and T. Salvemini, Rome: Libreria Eredi Virgilio Veschi, 1955. [Google Scholar]
  4. J.R. Quinlan, “Simplifying decision trees”, International Journal of Man-Machine Studies, 27(3):221–234, 1987. [CrossRef] [Google Scholar]
  5. H. Prosper, Multivariate discriminants, “Ensemble learning”, EPJ Web of Conferences 4 02001, 2010, SOS’08 - School of Statistics. [Google Scholar]
  6. R.E. Schapire, “The strength of weak learnability”, Machine Learning, 5(2):197–227, 1990. [Google Scholar]
  7. Y. Freund, “Boosting a weak learning algorithm by majority”, Information and Computation. 121(2):256–285, 1995. [CrossRef] [Google Scholar]
  8. Y. Freund and R.E. Schapire, “Experiments with a New Boosting Algorithm” in Machine Learning: Proceedings of the Thirteenth International Conference, edited by L. Saitta (Morgan Kaufmann, San Francisco) p. 148, 1996. [Google Scholar]
  9. B.P. Roe, H.-J. Yang, J. Zhu, Y. Liu, I. Stancu, and G. McGregor, Nucl. Instrum. Methods Phys. Res., Sect.A 543, 577, 2005; [Google Scholar]
  10. H.-J. Yang, B.P. Roe, and J. Zhu, Nucl. Instrum. Methods Phys. Res., Sect. A 555, 370, 2005. [Google Scholar]
  11. V. M. Abazov et al. [D0 Collaboration], “Evidence for production of single top quarks and first direct measurement of |Vtb|”, Phys. Rev. Lett. 98, 181802, 2007; [CrossRef] [PubMed] [Google Scholar]
  12. V. M. Abazov et al., “Evidence for production of single top quarks”, Phys. Rev. D78, 012005, 2008; [Google Scholar]
  13. V. M. Abazov et al., “Observation of single top quark production”, Phys. Rev. Lett. 103, 092001, 2009. [CrossRef] [PubMed] [Google Scholar]
  14. Y. Freund and R.E. Schapire, “A decision-theoretic generalization of on-line learning and an application to boosting”, Journal of Computer and System Sciences, 55(1):119–139, 1997. [Google Scholar]
  15. J.H. Friedman, T. Hastie and R. Tibshirani, “Additive logistic regression: a statistical view of boosting”, The Annals of Statistics, 28(2), 377–386, 2000. [Google Scholar]
  16. H. Prosper, Multivariate discriminants, “Optimal classification”, EPJ Web of Conferences 4 02001, 2010, SOS’08 - School of Statistics. [Google Scholar]
  17. A. Höcker et al., “TMVA: Toolkit for multivariate data analysis”, PoS ACAT, 040, CERNOPEN-2007-007, arXiv:physics/0703039, 2007. [Google Scholar]
  18. G. Cowan, “Multivariate statistical methods and data mining in particle physics”, CERN Academic Training Lectures, June 2008. http://indico.cern.ch/event/24827 [Google Scholar]
  19. J.H. Friedman, “Greedy function approximation: a gradient boosting machine”, The Annals of Statistics, 29 (5), 1189–1232, 2001. [Google Scholar]
  20. Y. Freund, “An adaptive version of the boost by majority algorithm”, Machine Learning, 43 (3), 293–318, 2001. [CrossRef] [Google Scholar]
  21. L. Breiman, “Bagging Predictors”, Machine Learning, 24 (2), 123–140, 1996. [Google Scholar]
  22. L. Breiman, “Random forests”, Machine Learning, 45 (1), 5–32, 2001. [Google Scholar]
  23. J.R. Quinlan, “Induction of decision trees”, Machine Learning, 1(1):81–106, 1986. [Google Scholar]
  24. J.R. Quinlan, C4.5: programs for machine learning, Morgan Kaufmann Publishers Inc., San Francisco, CA, 1993. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.