Open Access
Issue
EPJ Web of Conferences
Volume 114, 2016
EFM15 – Experimental Fluid Mechanics 2015
Article Number 02130
Number of page(s) 6
Section Contributions
DOI https://doi.org/10.1051/epjconf/201611402130
Published online 28 March 2016
  1. I. R. Titze and F. Alipour. The myoelastic aerodynamic theory of phonation. National Center for Voice and Speech, 2006. [Google Scholar]
  2. A. Kosík, M. Feistauer, J. Horáček, and P. Sváček. Numerical simulation of interaction of human vocal folds and fluid flow. Vibration Problems ICOVP 2011, 139:765–771, 2011. [CrossRef] [Google Scholar]
  3. P. Svacek and J. Horacek. Numerical simulation of glottal flow in interaction with self oscillating vocal folds: comparison of finite element approximation with a simplified model. Communications in Computational Physics, 12:789–806, 2012. [Google Scholar]
  4. N. Takashi and T. J. R. Hughes. An arbitrary Lagrangian-Eulerian finite element method for interaction of fluid and a rigid body. Computer Methods in Applied Mechanics and Engineering, 95:115–138, 1992. [CrossRef] [Google Scholar]
  5. M. Feistauer, P. Sváček, and J. Horáček. Numerical simulation of fluid-structure interaction problems with applications to flow in vocal folds. In T. Bodnár, G. P. Galdi, and S. Nečasová, editors, Fluid-structure Interaction and Biomedical Applications, pages 312–393. Birkhauser, 2014. [Google Scholar]
  6. M. Brdička, L. Samek, and B. Sopko. Continuum mechanics. Academia, 2000. [Google Scholar]
  7. J. Valášek, P. Sváček, and J. Horáček. On numerical approximation of fluid-structure interactions of air flow with a model of vocal folds. Topical Problems of Fluid Mechanics 2015, pages 245–254, 2015. [Google Scholar]
  8. M. Hadrava, M. Feistauer, J. Horáček, and A. Kosík. Discontinuous Galerkin method for the problem of linear elasticity with applications to the fluid-structure interaction. AIP Conference Proceedings, 1558:2348–2351, 2013. [CrossRef] [Google Scholar]
  9. M. Braack and P. B. Mucha. Directional do-nothing condition for the Navier-Stokes equations. Journal of Computational Mathematics, 32:507–521, 2014. [CrossRef] [Google Scholar]
  10. T. A. Davis. Direct methods for sparse linear systems. SIAM, 2006. [CrossRef] [Google Scholar]
  11. V. Girault and P. A. Raviart. Finite element methods for Navier-Stokes equations. Springer-Verlag, 1986. [CrossRef] [Google Scholar]
  12. R. C. Scherer, D. Shinwari, K. J. De Witt, Ch. Zhang, B. R. Kucinschi, and A. A. Afjeh. Intraglottal pressure profiles for a symmetric and oblique glottis with a divergence angle of 10 degrees. The Journal of the Acoustical Society of America, 109:1616–1630, 2001. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.