Open Access
Issue
EPJ Web Conf.
Volume 146, 2017
ND 2016: International Conference on Nuclear Data for Science and Technology
Article Number 02029
Number of page(s) 9
Section Evaluation
DOI https://doi.org/10.1051/epjconf/201714602029
Published online 13 September 2017
  1. OECD, Nuclear Energy Agency, “Collaborative International Evaluated Library Organisation (CIELO) Pilot Project”, WPEC Subgroup 40 (SG40) (see www.oecd-nea.org/science/wpec/sg40-cielo/) [Google Scholar]
  2. M.B. Chadwick, E. Dupont, E. Bauge, et al., “The CIELO Collaboration: Neutron Reactions on 1H, 16O, 56Fe, 235,238U, and 239Pu”, Nucl. Data Sheets 118, 1–25 (2014) [CrossRef] [Google Scholar]
  3. R. Capote and A. Trkov (coordinators), “IAEA CIELO Data Development Project” within the International Pilot Project of the OECD/NEA [1] (see www-nds.iaea.org/CIELO/) [Google Scholar]
  4. M.B. Chadwick, M.W. Herman, P. Oblozinský et al., “ENDF/B-VII.1 nuclear data for science and technology: cross sections, covariances, fission product yields and decay data”, Nucl. Data Sheets 112, 2887–2996 (2012) [CrossRef] [Google Scholar]
  5. JEFF Scientific Working group, Nuclear Energy Agency Data Bank, Joint Evaluated Fission and Fusion File (JEFF) release 3.2, OECD, March 5 (2014) [Google Scholar]
  6. K. Shibata et al., “JENDL-4.0: A New Library for Nuclear Science and Engineering”, J. Nucl. Sci. Technol. 48, 1–30 (2011) [CrossRef] [Google Scholar]
  7. R. Capote, A. Trkov, and V.G. Pronyaev, “Current Issues in Nuclear Data Evaluation Methodology: 235U Prompt Fission Neutron Spectra and Multiplicity for Thermal Neutrons”, Nucl. Data Sheets 123, 8–15 (2015) [CrossRef] [Google Scholar]
  8. R. Capote, Y.-J. Chen, F.-J. Hambsch, N.V. Kornilov, J.P. Lestone, O. Litaize, B. Morillon, D. Neudecker, S. Oberstedt, T. Ohsawa, N. Otuka, V.G. Pronyaev, A. Saxena, O. Serot, O.A. Shcherbakov, N.-C. Shu, D.L. Smith, P. Talou, A. Trkov, A.C. Tudora, R. Vogt, and A.C. Vorobyev, “Prompt fission neutron spectra of actinides”, Nucl. Data Sheets 131, 1–106 (2016) [CrossRef] [EDP Sciences] [Google Scholar]
  9. A.J. Plompen, T. Kawano, and R. Capote Noy, “Inelastic scattering and capture cross-section data of major actinides in the fast neutron region”, report INDC(NDS)-0597, International Atomic Energy Agency, Vienna (2012). Available online at www-nds.iaea.org/publications/indc/indc-nds-0597.pdf [Google Scholar]
  10. M.W. Herman, R. Capote, B.V. Carlson, P. Oblozinský, M. Sin, A. Trkov, H. Wienke, and V. Zerkin, “EMPIRE: Nuclear Reaction Model Code System for Data Evaluation”, Nucl. Data Sheets 108, 2655–2715 (2007) [CrossRef] [Google Scholar]
  11. M. Herman et al., “EMPIRE-3.2 Malta User's Manual”, report INDC(NDS)-0603, International Atomic Energy Agency, Vienna (2013). Available online at www-nds.iaea.org/publications/indc/indc-nds-0603.pdf [Google Scholar]
  12. ICSBEP 2016: International Handbook of Evaluated Criticality Safety Benchmark Experiments, Nuclear Energy Agency, OECD, Paris (2016) See list online at www.oecd-nea.org/science/wpncs/icsbep/handbook.html [Google Scholar]
  13. R.E. MacFarlane, D.W. Muir, R.M. Boicourt, A.C. Kahler, “The NJOY Nuclear Data Processing System, Version 2012”, LANL report LA-UR-12-27079, Los Alamos, USA (2012) [Google Scholar]
  14. “MCNP—A General Monte Carlo Code for Neutron and Photon Transport, Version 5”, LANL report LA-UR-05-8617, Los Alamos, USA (2005) [Google Scholar]
  15. A. Trkov, R. Capote, I. Kodeli, and L. Leal, “Evaluation of tungsten nuclear reaction data with covariances”, Nucl. Data Sheets 109, 2905–2909 (2008) [CrossRef] [Google Scholar]
  16. A. Trkov, R. Capote, E.Sh. Soukhovitskii, L.C. Leal, M. Sin, I. Kodeli, and D.W. Muir, “Covariances of Evaluated Nuclear Cross Section Data for 232Th, 180,182,183,184,186W and 55Mn”, Nucl. Data Sheets 112, 3098–3119 (2011) [CrossRef] [Google Scholar]
  17. R. Capote, M.W. Herman, P. Oblozinský et al., “RIPL–Reference Input Parameter Library for calculation of nuclear reactions and nuclear data evaluations”, Nucl. Data Sheets 110, 3107–3214 (2009) (see www-nds.iaea.org/RIPL-3/) [NASA ADS] [CrossRef] [Google Scholar]
  18. J. Raynal, “Optical model and coupled-channel calculations in nuclear physics”, in: Computing as a language of physics, ICTP International Seminar Course, Trieste, 2-20 August 1971, report STI/PUB-306, International Atomic Energy Agency, Vienna (1972), pp. 281–322. ECIS code distributed by the NEA DATA Bank (OECD, Paris) [Google Scholar]
  19. R. Capote, E.Sh. Soukhovitskiĩ, J.M. Quesada, and S. Chiba, “Is a global coupled-channel dispersive optical model potential for actinides feasible?”, Phys. Rev. C72, 064610 (2005), RIPL 2408 potential [Google Scholar]
  20. R. Capote, S. Chiba, E.Sh. Soukhovitskiĩ, J.M. Quesada, and E. Bauge, “A global dispersive coupled-channel optical model potential for actinides”, J. Nucl. Sci. Tech. 45, 333–340 (2008), RIPL 2408 potential [CrossRef] [Google Scholar]
  21. F.S. Dietrich, I.J. Thompson, and T. Kawano, “Target-state dependence of cross sections for reactions on statically deformed nuclei”, Phys. Rev. C85, 044611 (2012) [Google Scholar]
  22. E.Sh. Soukhovitskiĩ, R. Capote, J.M. Quesada, S. Chiba, and D.S. Martyanov, “Nucleon scattering on actinides using a dispersive optical model with extended couplings”, Phys. Rev. C94, 064605 (2016) [Google Scholar]
  23. J.M. Quesada, R. Capote, A. Molina, and M. Lozano, “Dispersion relations in the nuclear optical model”, Comp. Phys. Commun. 153, 97–105 (2003) [CrossRef] [Google Scholar]
  24. J.M. Quesada, R. Capote, A. Molina, M. Lozano, and J. Raynal, “Analytical expressions for the dispersive contributions to the nucleon-nucleus optical potential”, Phys. Rev. C67, 067601 (2003) [Google Scholar]
  25. A.M. Lane, “New term in the nuclear optical potential: implications for (p,n) mirror state reactions”, Phys. Rev. Lett. 8, 171–172 (1962) [CrossRef] [Google Scholar]
  26. A.M. Lane, “Isobaric spin dependence of the optical potential and quasi-elastic (p,n) reactions”, Nucl. Phys. 35, 676–685 (1962) [CrossRef] [Google Scholar]
  27. J.M. Quesada, R. Capote, E.Sh. Soukhovitskiĩ, and S. Chiba, “Approximate Lane consistency of the dispersive coupled-channels potential for actinides”, Phys. Rev. C76, 057602 (2007) [Google Scholar]
  28. P.G. Young, M.B. Chadwick, R.E. MacFarlane et al., “Evaluation of Neutron Reactions for ENDF/B-VII: 232−241U and 239Pu”, Nucl. Data Sheets 108, 2589–2654 (2007) [CrossRef] [Google Scholar]
  29. W. Hauser and H. Feshbach, “The inelastic scattering of neutrons”, Phys. Rev. 87, 366–373 (1952) [NASA ADS] [CrossRef] [Google Scholar]
  30. H.M. Hoffmann, J. Richert, J.W. Tepel and H.A. Weidenmüller, “Direct reactions and Hauser-Feshbach theory”, Ann. Phys. (N.Y.) 90, 403–437 (1975) [NASA ADS] [CrossRef] [Google Scholar]
  31. R. Capote, A. Trkov, M. Sin, M. Herman, A. Daskalakis, and Y. Danon, “Physics of Neutron Interactions with 238U: New Developments and Challenges”, Nucl. Data Sheets 118, 26–31 (2014) [CrossRef] [Google Scholar]
  32. T. Kawano, R. Capote, S. Hilaire, and P. Chau Huu-Tai, “Statistical Hauser-Feshbach theory with width-fluctuation correction including direct reaction channels for neutron-induced reactions at low energies”, Phys. Rev. C94, 014612 (2016) [Google Scholar]
  33. S. Björnholm, A. Bohr, and B.R. Mottelson, “Role of symmetry of the nuclear shape in rotational contributions to nuclear level densities”, in pp. 367–372, Ref. [34] [Google Scholar]
  34. Third IAEA Symp. on Physics and Chemistry of Fission, Rochester, New York, 13–17 August 1973, report STI/PUB/347, Vol. I, International Atomic Energy Agency, Vienna (1974) [Google Scholar]
  35. R. Capote, V. Osorio, R. López, E. Herrera, and M. Piris, “Analysis of experimental data on neutron-induced reactions and development of code PCROSS for the calculation of differential pre-equilibrium emission spectra with modelling of the level density function”, Final report on research contract 5472/RB, report IAEA(CUB)-004 International Atomic Energy Agency, Vienna (1991) [Google Scholar]
  36. S. Goriely, S. Hilaire, A.J. Koning, M. Sin, and R. Capote, “Towards a prediction of fission cross sections on the basis of microscopic nuclear inputs”, Phys. Rev. C79, 024612 (2009) [Google Scholar]
  37. S. Goriely, S. Hilaire, A.J. Koning, and R. Capote, “Towards an improved evaluation of neutron-induced fission cross sections on actinides”, Phys. Rev. C83, 034601 (2011) [Google Scholar]
  38. M. Sin, R. Capote, M. Herman, and A. Trkov, “Modelling Neutron-induced Reactions on 232−237U from 10 keV up to 30 MeV”, Nucl. Data Sheets 139, 138–170 (2017) [CrossRef] [Google Scholar]
  39. M. Sin, R. Capote, M. Herman, and A. Trkov, “Extended optical model for fission”, Phys. Rev. C93, 034605 (2016) [Google Scholar]
  40. T. Ichikawa, P. Möller, and A. J. Sierk, “Character and prevalence of third minima in actinide fission barriers”, Phys. Rev. C87, 054326 (2013) [Google Scholar]
  41. M. Sin and R. Capote, “Transmission through multi-humped fission barriers with absorption: A recursive approach”, Phys. Rev. C77, 054601 (2008) [Google Scholar]
  42. S. Badikov et al., “International Evaluation of Neutron Cross-Section Standards”, report STI/PUB/1291, International Atomic Energy Agency, Vienna (2008) [Google Scholar]
  43. A.D. Carlson, V.G. Pronyaev, D.L. Smith et al., “International Evaluation of Neutron Cross Section Standards”, Nucl. Data Sheets 110, 3215–3324 (2009) [CrossRef] [Google Scholar]
  44. R.G. Johnson, M.S. Dias, A.D. Carlson, and O.A. Wasson, “The 235U standard neutron cross section. II. Measurements from 1.0 to 6.0 MeV using the dual thin scintillator”, priv. communication by A. D. Carlson, EXFOR 12924 [Google Scholar]
  45. A.D. Carlson, O.A. Wasson, P.W. Lisowski, J.L. Ullmann, and N.W. Hill, “Measurements of the 235U(n,f) cross section in the 3 to 30 MeV neutron energy region”, in Proc. Int. Conf. on Nuclear Data for Science and Technology, Jülich, Fed. Rep. of Germany,13–17 May 1991, S. M. Qaim, (Ed.), pp. 518–519, Springer (1991), EXFOR 14015 [Google Scholar]
  46. P.W. Lisowski, A. Gavron, W.E. Parker, S.J. Balestrini, A.D. Carlson, O.A. Wasson, and N.W. Hill, “Fission cross sections ratios for 233U, 234U, 236U relative to 235U from 0.5 to 400 MeV”, in Proc. Int. Conf. on Nuclear Data for Science and Technology, Jülich, Fed. Rep. of Germany, 13–17 May 1991, S. M. Qaim, (Ed.), pp. 732–733, Springer (1991), EXFOR 14011 [Google Scholar]
  47. T. Iwasaki, Y. Karino, S. Matsuyama, F. Manabe, M. Baba, K. Kanda, and N. Hirakawa, “Measurement of 235U fission cross section around 14 MeV”, in Proc. Int. Conf. on Nuclear Data for Science and Technology, Mito, Japan, May 30–June 3 1988, S. Igarasi (Ed.), JAERI, pp. 87–90, EXFOR 22091 [Google Scholar]
  48. A.D. Carlson, J.W. Behrens, R.G. Johnson, and G.E. Cooper, “Absolute measurements of the 235U(n,f) cross-section for neutron energies from 0.3 to 3 MeV”, in Proc. Adv. Group Meet. on Nuclear Standard Reference Data, Geel, 12–16 Nov. 1984, report IAEA-TECDOC-335, International Atomic Energy Agency, Vienna, pp. 162–166 (1985). Available online at www-nds.iaea.org/publications/tecdocs/iaea-tecdoc-0335.pdf, EXFOR 10987 [Google Scholar]
  49. O.A. Wasson, A.D. Carlson, and K.C. Duvall, “Measurement of the 235U neutron-induced fission cross section at 14.1 MeV”, Nucl. Sci. & Eng. 80, 282–303 (1982), EXFOR 10971 [CrossRef] [Google Scholar]
  50. M. Mahdavi, G.F. Knoll, K. Zasadny, and J.C. Robertson, “Measurements of the 14-MeV fission cross-sections for 235U and 239Pu”, in Proc. Int. Conf. on Nuclear Data for Science and Technology, Antwerp, Belgium, 6–10 Sept. 1982, K.H. Bockhoff (Ed.), Springer, pp. 58–61 (1982), EXFOR 12826 [Google Scholar]
  51. Li Jing-Wen, Li An-Li, Rong Chao-Fan, Ye Zhong-Yuan, Wu Jing-Xia, and Hao Xiu-Hong, “Absolute measurements of 235U and 239Pu fission cross section induced by 14.7 MeV neutrons”, in Proc. Int. Conf. on Nuclear Data for Science and Technology, Antwerp, Belgium, 6–10 Sept. 1982, K.H. Bockhoff (Ed.), Springer, pp. 55–57 (1982), EXFOR 30634 [Google Scholar]
  52. T.A. Mostovaya, V.I. Mostovoy, S.A. Biryukov, A.A. Osochnikov, and A.V. Tsvetkov, “Fission cross-sections measurement for 233U and 235U in the energy range 0.1–100 KeV and cross-section ratio measurement 233U/235U up to 2 MeV”, in Proc. 5th All Union Conf. on Neutron Phys., Kiev, 15–19 Sept. 1980, Vol. 3, p. 30–32 (1980), USSR (in Russian), EXFOR 40616 [Google Scholar]
  53. V.N. Kononov, E.D. Poletayev, and B.D. Yurlov, “Measurement of alpha, neutron fission and the 235U and 239Pu fission and capture cross sections for 10–80 keV neutrons”, At. Energy 38, 105–109 (1975), EXFOR 40412 [CrossRef] [Google Scholar]
  54. W.P. Poenitz, “Relative and absolute measurements of the fast-neutron fission cross wection of 235U”, Nucl. Sci. & Eng. 53, 370–392 (1974), EXFOR 10333 [CrossRef] [Google Scholar]
  55. N. Otuka, E. Dupont, V. Semkova, B. Pritychenko et al., “Towards a More Complete and Accurate Experimental Nuclear Reaction Data Library (EXFOR): International Collaboration Between Nuclear Reaction Data Centres (NRDC)”, Nucl. Data Sheets 120, 272–276 (2014). Data available online (e.g., at www-nds.iaea.org/exfor/) [CrossRef] [Google Scholar]
  56. R. Batchelor and K. Wyld, “Neutron scattering by 235U and 239Pu for incident neutrons of 2, 3 and 4 MeV”, report 55/69, A.W.R.E. Aldermaston Reports, UK (1969), EXFOR 20036 [Google Scholar]
  57. D.M. Drake, “Inelastic neutron scattering and gamma production from fast-neutron bombardment of 235U”, Nucl. Phys. A133, 108–112 (1969), EXFOR 10016 [CrossRef] [Google Scholar]
  58. B.H. Armitage, A.T.G. Ferguson, J.H. Montague, and N. Starfelt, “Inelastic scattering of fast neutrons by 235U”, Conf. on Nuclear data for reactors; Vol. I, 17–21 Oct. 1966, Paris, France, IAEA report STI/PUB-140, International Atomic Energy Agency, Vienna, 383–392 (1967), EXFOR 21086. Available online at www-nds.iaea.org/publications/proceedings/66PARIS_1_1967.pdf [Google Scholar]
  59. V.N. Andreev, “Inelastic scattering of neutrons of the fission spectrum and neutrons with an energy of 0.9 MeV on 235U and 239Pu”, Neitronnaya Fizika, p. 287 (Moskva, USSR, 1961); translated as Sov. Progr. in Neutr. Phys., p. 211 (New York, USA, 1961) [Google Scholar]
  60. J. Frehaut, A. Bertin, and R. Bois, “Measurement of the 235U(n,2n) cross section between threshold and 13 MeV”, Nucl. Sci. & Eng. 74, 29–33 (1980), EXFOR 21568 [CrossRef] [Google Scholar]
  61. D.S. Mather, P.F. Bampton, R.E. Coles, G. James, and P.J. Nind, “Measurement of (n,2n) cross sections for incident energies between 6 and 14 MeV”, report AWRE-O-47/69, A.W.R.E. Aldermaston Reports, UK (1969), EXFOR 20795 [Google Scholar]
  62. J.L. Kammerdiener, “Neutron spectra emitted by 239Pu, 238U, 235U, Pb, Nb, Ni, Al, and C irradiated by 14 MeV neutrons”, Lawrence Rad. Lab. (Berkeley and Livermore) report UCRL-51232, University of California, Davis, USA (1972) [Google Scholar]
  63. L.F. Hansen, C. Wong, T.T. Komoto, B.A. Pohl, E. Goldberg, R.J. Howerton, and W.W. Webster, “Neutron and gamma spectra from 232Th, 235U, 238U and 239Pu after bombardment with 14 MeV neutrons”, Nucl. Sci. & Eng. 72, 35–49 (1979) [CrossRef] [Google Scholar]
  64. R. Gwin, E.G. Silver, R.W. Ingle and H. Weaver, “Measurement of the neutron capture and fission cross sections of 239Pu and 235U, 0.02 eV to 200 keV, the neutron capture cross sections of 197Au, 10 to 50 keV, and neutron fission cross sections of 233U, 5 to 200 keV”, Nucl. Sci. & Eng. 59, 79–105 (1976) [CrossRef] [Google Scholar]
  65. F. Corvi, L. Calabretta, M. Merla, M.S. Moore, T. van der Veen, “Measurement of the neutron induced fission and capture cross sections, and alpha of 235U in keV region”, in Prog. report from CEC-Countries and CEC to NEANDC, report NEANDC(E)-232, Vol. 3, p. 5 (1982), EXFOR 21177 [Google Scholar]
  66. F. Corvi, “Status of neutron capture data of 233U, 235U, and 239Pu in the unresolved resonance region”, in Proc. NEANDC/NEACRP Specialist's Meeting on fast neutron capture cross sections, April 20–23, 1982, Argonne National Laboratory, USA, report NEANDC(US)-214/L, 314–335 (1982), EXFOR 21177 [Google Scholar]
  67. F. Corvi and P. Giacobbe, “Capture-To Fission Ratio of 235-U from the Measurement Of Low Energy Gamma-Rays”, in Proc. Conf. on Nucl. Cross Sections and Techn., Washington D.C., National Bureau of Standards Special Publication 425, p. 599 (1975), EXFOR 22630 [Google Scholar]
  68. V.P. Vertebnyy, N.L. Gnidak, A.V. Grebnev, A.L. Kirilyuk, E.A. Pavlenko, N.A. Trofimova, “Determination of total cross-section and scattering cross-section of 235U for neutron energies 2– and 24.5 kev”, in Proceed. 5th All Union Conf. on Neutron Phys., Kiev, 15–19 Sept. 1980, Vol. 2, p. 254 (1980), USSR (in Russian), EXFOR 40609 [Google Scholar]
  69. L.W. Weston, G. De Saussure, and R. Gwin, “Ratio of capture to fission in U235 at keV neutron energies”, Nucl. Sci. & Eng. 20, 80 (1964), EXFOR 12407 [CrossRef] [Google Scholar]
  70. L.W. Weston, G. De Saussure, and R. Gwin, “Neutron capture in 238-U and the ratio of capture to fission in 235-U”, Technical report EANDC-33 (1963), EXFOR 12456 [Google Scholar]
  71. J.C. Hopkins and B.C. Diven, “Neutron Capture to Fission Ratios in 233U, 235U, and 239Pu”, Nucl. Sci. & Eng. 12, 169–177 (1962), EXFOR 12331 [CrossRef] [Google Scholar]
  72. G. De Saussure, L.W. Weston, J.D. Kington, R.D. Smiddie, and W.S. Lyon, “The measurement of alpha as a function of energy”, Oak Ridge National Lab. Reports, No. 3360, p. 51 (1962) [Google Scholar]
  73. M. Jandel, T.A. Bredeweg, E.M. Bond, M.B. Chadwick, A. Couture, J.M. O'Donnell, M. Fowler, R.C. Haight, T. Kawano, R. Reifarth, R.S. Rundberg, J.L. Ullmann, D.J. Vieira, J.M. Wouters, J.B. Wilhelmy, C.Y. Wu, J.A. Becker, “New precision measurements of the 235U(n,γ) cross section”, Phys. Rev. Lett. 109, 202506 (2012), EXFOR 14149 [CrossRef] [PubMed] [Google Scholar]
  74. A. Wallner, T. Belgya, M. Bichler, K. Buczak, I. Dillmann, F. Kaeppeler, C. Lederer, A. Mengoni, F. Quinto, P. Steier, and L. Szentmiklosi, “Novel method to study neutron capture of 235U and 238U simultaneously at keV energies”, Phys. Rev. Lett. 112, 192501 (2014), EXFOR 23170 [CrossRef] [PubMed] [Google Scholar]
  75. G. De Saussure, L.W. Weston, R. Gwin, R.W. Ingle, J.H. Todd, R.W. Hockenbury, R.R. Fullwood, and A. Lottin, “Measurement of the neutron capture and fission cross sections and of their ratio,alpha, for U-233, U-235, and Pu-239”, Report STI/PUB/140, Proc. Nuclear Data For Reactors Conf., Paris 1966 (IAEA, Vienna, 1967), Vol.2, 233–250 (1966). Available online at www-nds.iaea.org/publications/proceedings/66PARIS_2_1967.pdf [Google Scholar]
  76. B.C. Diven, J. Terrell, and A. Hemmendinger, “Capture-To-Fission Ratios For Fast Neutrons In 235U”, Phys. Rev. 109, 144 (1958), EXFOR 12416 [CrossRef] [Google Scholar]
  77. J.M. Allmond, L.A. Bernstein, C.W. Beausang et al., “Relative 235U(n,γ) and (n,f) cross sections from 235U(d,pγ) and (d,pf) reactions”, Phys. Rev. C 69, 054610 (2009), EXFOR 14230 [CrossRef] [Google Scholar]
  78. R. Capote, A. Trkov, M. Sin, M.W. Herman, and E.S.H. Soukhovitskii, “Elastic and inelastic scattering of neutrons on 238U nucleus”, EPJ Web of Conferences 69, 00008 (2014) [CrossRef] [EDP Sciences] [Google Scholar]
  79. R. Capote, M. Sin, A. Trkov, M.W. Herman, D. Bernard, G. Noguere, A. Daskalakis, and Y. Danon, “Evaluation of neutron induced reactions on U-238 nucleus”, Proc. NEMEA-7 Workshop NEA/NSC/DOC(2014)13, NEA, OECD (2014) [Google Scholar]
  80. European Community Framework Project 7, Project ID: 605203, “solving CHAllenges in Nuclear DAta” [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.