Open Access
EPJ Web Conf.
Volume 153, 2017
ICRS-13 & RPSD-2016, 13th International Conference on Radiation Shielding & 19th Topical Meeting of the Radiation Protection and Shielding Division of the American Nuclear Society - 2016
Article Number 06008
Number of page(s) 6
Section 6. Calculation Methods Monte Carlo & Deterministic
Published online 25 September 2017
  1. T. Sato, K. Niita, N. Matsuda, S. Hashimoto, Y. Iwamoto, S. Noda, T. Ogawa, H. Iwase, H. Nakashima, T. Fukahori, K. Okumura, T. Kai, S. Chiba, T. Furuta and L. Sihver, Particle and Heavy Ion Transport Code System PHITS, Version 2.52, J. Nucl. Sci. Technol. 50, 913-923 (2013). [Google Scholar]
  2. T. Furuta, K.L. Ishikawa, N. Fukunishi, S. Noda, S. Takagi, T. Maeyama, K. Fukasaku, and R. Himeno, Implementation of OpenMP and MPI hybrid parallelization to Monte Carlo dose simulation for particle therapy, IFMBE Proceedings, 39, 2099–2102. (2012). [CrossRef] [Google Scholar]
  3. T. Kai, F. Maekawa, K. Kosako, Y. Kasugai, H. Takada, and Y. Ikeda, DCHAIN-SP 2001: High energy particle induced radioactivity calculation code, JAERI-Data/Code 2001-016, (2001). [in Japanese] [Google Scholar]
  4. [Google Scholar]
  5. Y. Nara, H. Otuka, A. Ohnishi, K. Niita, and S. Chiba, Relativistic nuclear collisions at 10A GeV energies from p+Be to Au+Au with the hadronic cascade model, Phys. Rev. C 61, 024901 (2000). [CrossRef] [Google Scholar]
  6. K. Niita, S. Chiba, T. Maruyama, T. Maruyama, H. Takada, T. Fukahori, Y. Nakahara, and A. Iwamoto, Analysis of the (N,Xn) Reactions by Quantum Molecular-Dynamics Plus Statistical Decay Model, Phys. Rev. C 52, 2620–2635 (1995). [CrossRef] [Google Scholar]
  7. H. Hirayama, Y. Namito, A.F. Bielajew, S.J. Wilderman, and W.R. Nelson, The EGS5 code system, SLAC-R-730 and KEK Report 2005-8, (2005). [CrossRef] [Google Scholar]
  8. T. Ogawa, T. Sato, S. Hashimoto, D. Satoh, S. Tsuda, and K. Niita, Energy-dependent fragmentation cross sections of relativistic 12C, Phys. Rev. C 92, 024614 (2015). [CrossRef] [Google Scholar]
  9. F. Flesch, S.E. Hirzebruch, G. Hüntrup, H. Röcher, T. Streibel, E. Winkel, W. Heinrich, Fragmentation cross section measurements of iron projectiles using CR-39 plastic nuclear track detectors, Radiat. Meas., 31, 533–536 (1999) [CrossRef] [Google Scholar]
  10. T. Ogawa, S. Hashimoto, T. Sato, Development of general nuclear resonance fluorescence model, J. Nucl. Sci. Technol. 53, 1766–1773 (2016). [CrossRef] [Google Scholar]
  11. S. Noda, S. Hashimoto, T. Sato, T. Fukahori, S. Chiba and K. Niita, Improvement of photonuclear reaction model below 140 MeV in the PHITS code, J. Nucl. Sci. Technol. 52, 57-62 (2015). [CrossRef] [Google Scholar]
  12. S. Abe and T. Sato, Muon interaction models implemented into PHITS. J Nucl Sci Technol. 53, 451–458 (2016). [CrossRef] [Google Scholar]
  13. M. Crouch, An improved world survey expression for cosmic ray vertical intensity vs. depth in standard rock, Proc. 20th Int. Cosmic Ray Conf.; 1987 Aug 2-15; Moscow (USSR). 6, 165-168 (1987). [Google Scholar]
  14. M. Aglietta, B. Alpat, E. D. Alyea et al., Muon “depthintensity” relation measured by the LVD underground experiment and cosmic-ray muon spectrum at sea level, Phys. Rev. D. 58, 092005 (1998). [Google Scholar]
  15. T. Sato, Analytical Model for Estimating Terrestrial Cosmic Ray Fluxes Nearly Anytime and Anywhere in the World: Extension of PARMA/EXPACS, PLOS ONE 10 (12), e0144679 (2015). [Google Scholar]
  16. T. Sato, Analytical Model for Estimating the Zenith Angle Dependence of Terrestrial Cosmic Ray Fluxes. PLOS ONE 11(8): e0160390 (2016). [Google Scholar]
  17. T. Ogawa, S. Hashimoto, T. Sato, K. Niita, Development of gamma de-excitation model for prediction of prompt gamma-rays and isomer production based on energy-dependent level structure treatment, Nucl. Instr. Meth. B 325, 35–42 (2014). [CrossRef] [Google Scholar]
  18. L. Sihver, A. Kohama, K. Iida, K. Oyamatsu, S. Hashimoto, H. Iwase, K. Niita, Current status of the “Hybrid Kurotama model” for total reaction cross sections, Nucl. Instr. Meth. B 334, 34–39 (2014). [CrossRef] [Google Scholar]
  19. T. Sato, R. Kataoka, H. Yasuda, S. Yashiro, T. Kuwabara, D. Shiota and Y. Kubo, Air Shower Simulation for WASAVIES: Warning System for Aviation Exposure to Solar Energetic Particles, Radiat. Prot. Dosim. 161, 274 278 (2014). [Google Scholar]
  20. K. Shibata, O. Iwamoto, T. Nakagawa, N. Iwamoto, A. Ichihara, S. Kunieda, S. Chiba, K. Furutaka, N. Otuka, T. Ohsawa, T. Murata, H. Matsunobu, A. Zukeran, S. Kamada, and J. Katakura, JENDL-4.0: A New Library for Nuclear Science and Engineering, J. Nucl. Sci. Technol. 48, 1-30 (2011). [Google Scholar]
  21. T. Ogawa, T. Sato, S. Hashimoto, K. Niita, Development of a reaction ejectile sampling algorithm to recover kinematic correlations from inclusive cross-section data in Monte-Carlo particle transport simulations, Nucl. Instr. Meth. A 763, 575–590 (2014). [CrossRef] [Google Scholar]
  22. S. Hashimoto, Y. Iwamoto, T. Sato, K. Niita, A. Boudard, J. Cugnon, J.C. David, S. Leray, D. Mancusi, New approach to description of (d,xn) spectra at energies below 50 MeV in Monte Carlo simulation by intra-nuclear cascade code with Distorted Wave Born Approximation, Nucl. Instr. Meth. B 333, 27-41 (2014). [CrossRef] [Google Scholar]
  23. A. Boudard, J. Cugnon, J.C. David, S. Leray, and D. Mancusi, New potentialities of the Liège intranuclear cascade model for reactions induced by nucleons and light charged particles, Phys. Rev. C 87, 014606 (2013). [Google Scholar]
  24. M. Hagiwara, T. Itoga, N. Kawata, N. Hirabayashi, T. Oishi, T. Yamauchi, M. Baba, M. Sugimoto, and T. Muroga, Measurement of neutron emission spectra in Li(d,xn) reaction with thick and thin targets for 40- MeV deuterons, Fusion Sci. Technol. 48, 1320-1328 (2005). [CrossRef] [Google Scholar]
  25. [Google Scholar]
  26. [Google Scholar]
  27. [Google Scholar]
  28. International Commission on Radiological Protection, Adult reference computational phantoms, ICRP Publication 110, Ann ICRP 39 (2) (2009). [Google Scholar]
  29. T. Sato, K. Manabe, N. Hamada, Microdosimetric analysis confirms similar biological effectiveness of external exposure to gamma-rays and internal exposure to 137Cs, 134Cs, and 131I, PLOS ONE 9 (6), e99831 (2014). [Google Scholar]
  30. A. Endo, Y. Yamaguchi and K.F. Eckerman, Nuclear decay data for dosimetry calculation - Revised data of ICRP Publication 38, JAERI 1347 (2005). [Google Scholar]
  31. International Commission on Radiological Protection, Nuclear decay data for dosimetric calculations, ICRP Publication 107, Ann ICRP 38 (3) (2008). [Google Scholar]
  32. J.M. Verbeke, C. Hagmnn, and D. Wright, Simulation of neutron and gamma ray emission from fission and photofission, UCRL-AR-228518 (2014). [Google Scholar]
  33. [Google Scholar]
  34. A. Endo and T. Sato, Analysis of Linear Energy Transfers and Quality Factors of Charged Particles Produced by Spontaneous Fission Neutrons from 252Cf and 244Pu in the Human Body, Radiat. Prot. Dosim. 154, 142-147 (2013). [CrossRef] [Google Scholar]
  35. Y. Iwamoto, T. Sato, S. Hashimoto, T. Ogawa, T. Furuta, S. Abe, T. Kai, N. Matsuda, R. Hosoyamada, and K. Niita, Comprehensive benchmark study for the recent version of the PHITS code, submitted. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.