Open Access
Issue |
EPJ Web Conf.
Volume 170, 2018
ANIMMA 2017 – Advancements in Nuclear Instrumentation Measurement Methods and their Applications
|
|
---|---|---|
Article Number | 02001 | |
Number of page(s) | 5 | |
Section | Fusion diagnostics and technology | |
DOI | https://doi.org/10.1051/epjconf/201817002001 | |
Published online | 10 January 2018 |
- Nan, T. Hui, Y. Rinaldi, M. and Sun, N. “Self-biased 215 MHz magnetoelectric NEMS resonator for ultra-sensitive DC magnetic field detection,” Scientific reports, vol. 3, p. 1985, 2013. [Online]. Available: https://www.nature.com/articles/srep01985 [Google Scholar]
- H. V. Thakur, S. M. Nalawade, S. Gupta, R. Kitture, and S. N. Kale, “Photonic crystal fiber injected with Fe3O4 nanofluid for magnetic field detection,” Applied Physics Letters, vol. 99, p. 161101, 2011. [Online]. Available: http://aip.scitation.org/doi/abs/10.1063/1.3651490 [CrossRef] [Google Scholar]
- P. Orr, P. Niewczas, M. Stevenson, and J. Canning, “Compound phase-shifted fiber Bragg structures as intrinsic magnetic field sensors,” IEEE Journal of Lightwave Technlogy, vol. 28, no. 18, pp. 2667–2673, 2010. [CrossRef] [Google Scholar]
- Y. Su, B. Zhang, Y. Zhu, and Y. Li, “Sensing circular birefringence by polarization-dependent parameters in fiber Bragg gratings and the influence of linear birefringence,” Optical Fiber Technology, vol. 18, pp. 51–57, 2012. [CrossRef] [Google Scholar]
- H. Peng, Y. Su, and Y. Li, “Evolution of polarization properties in circular birefringent fiber Bragg gratings and application for magnetic field sensing,” Optical Fiber Technology, vol. 18, pp. 177–182, 2012. [CrossRef] [Google Scholar]
- L. I. Chong-Zhen and W. U. Bao-Jian, “Theory and experiment on polarization-dependent loss of magnetooptical fiber Bragg grating system with a polarization controller,” Microwave and Optical Technology Letters, vol. 53, no. 10, pp. 2224–2228, 2011. [CrossRef] [Google Scholar]
- S. Bette, C. Caucheteur, M. Wuilpart, and P. Mégret, “Theoretical and experimental study of differential group delay and polarization dependent loss of Bragg gratings written in birefringent fiber,” Opt. Communication, vol. 269, pp. 331–337, 2007. [CrossRef] [Google Scholar]
- F. Descamps, D. Kinet, S. Bette, and C. Caucheteu, “Magnetic field sensing using standard uniform FBGs,” Optics Express, vol. 24, no. 23, pp. 26152–26160, 2016. [CrossRef] [PubMed] [Google Scholar]
- C. Broadway, D. Gallego, A. Pospori, M. Zubel, D. J. Webb, K. Sugden, G. Carpintero, and H. Lamela, “A compact polymer optical fibre ultrasound detector,” in Proc. SPIE 9708, Photons Plus Ultrasound: Imaging and Sensing, A. A. Oraevsky and L. V. Wang, Eds., vol. 9708. SPIE, 2016, pp. 970 813–970 813–7. [Online]. Available: http://dx.doi.org/10.1117/12.2212420 [Google Scholar]
- W. Zhang and D. J. Webb, “Humidity responsivity of poly(methyl methacrylate)- based optical fiber Bragg grating sensors,” Optics Letters, vol. 39, no. 10, pp. 3026–3029, 2014. [Online]. Available: http://dx.doi.org/10.1364/OL.39.003026 [CrossRef] [PubMed] [Google Scholar]
- C. Caucheteur, F. Lhommé, K. Chah, M. Blondel, and P. Mégret, “Simultaneous strain and temperature sensor based on the numerical reconstruction of polarization maintaining fiber Bragg gratings,” Optics and Lasers in Engineering, vol. 44, no. 5, pp. 411–422, 2006. [CrossRef] [Google Scholar]
- C. Caucheteur, M. Debliquy, D. Lahem, and P. Mégret, “Hybrid fiber gratings coated with a catalytic sensitive layer for hydrogen sensing in air,” Optics Express, vol. 16, no. 21, pp. 16 854–16 859, 2008. [CrossRef] [Google Scholar]
- C. A. F. Marques, L. Bilro, L. Kahn, R. A. Oliveira, D. J. Webb, and R. N. Nogueira, “Acousto-optic effect in microstructured polymer fiber bragg gratings: Simulation and experimental overview,” Journal of Lightwave Technology, vol. 31, no. 10, pp. 1551–1558, 2013. [CrossRef] [Google Scholar]
- D. Kinet, P. Mégret, W. Goossen, L. Qiu, D. Heider, and C. Caucheteur, “Fiber Bragg grating sensors toward structural health monitoring in composite materials: Challenges and solutions,” Sensors, vol. 14, no. 4, pp. 7394–7419, 2014. [CrossRef] [Google Scholar]
- F. Descamps, M. Aerssens, A. Gusarov, P. Mégret, V. Massaut, and M. Wuilpart, “Simulation of vibration-induced effect on plasma current measurement using a fiber optic current sensor,” Optics Express, vol. 22, no. 12, pp. 14 666–14 680, 2014. [CrossRef] [Google Scholar]
- M. Wuilpart, M. Aerssens, A. Gusarov, P. Moreau, and P. Mégret, “Plasma current measurement in thermonuclear fusion reactors using a photon-counting POTDR,” IEEE Photonics Technology Letters, vol. 29, no. 6, pp. 547–550, 2017. [CrossRef] [Google Scholar]
- M. Wuilpart and M. Tur, “Polarization effects in optical fibers,” in Advanced Fiber Optics: Concepts and Technology, L. Thévenaz, Ed. EPFL Press, 2011, ch. 2, pp. 29–86. [CrossRef] [Google Scholar]
- J. L. Cruz, M. V. Andres, and M. A. Hernandez, “Faraday effect in standard optical fibers: dispersion of the effective Verdet constant,” Appl. Opt., vol. 35, no. 6, pp. 922–927, 1996. [CrossRef] [PubMed] [Google Scholar]
- B. L. Heffner, “Deterministic, analytically complete measurement of polarization-dependent transmission through optical devices,” IEEE Photonics Tech. Lett., vol. 4, pp. 451–454, 1992. [CrossRef] [Google Scholar]
- B. L. Heffner, “Automated measurement of polarization mode dispersion using jones matrix eigenanalysis,” IEEE Photonics Tech. Lett., vol. 4, pp. 1066–1069, 1992. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.