Open Access
Issue
EPJ Web Conf.
Volume 245, 2020
24th International Conference on Computing in High Energy and Nuclear Physics (CHEP 2019)
Article Number 02035
Number of page(s) 7
Section 2 - Offline Computing
DOI https://doi.org/10.1051/epjconf/202024502035
Published online 16 November 2020
  1. ATLAS Collaboration, JINST 3, S08003 (2008) [Google Scholar]
  2. ATLAS Collaboration, ATLAS Insertable B-Layer Technical Design Report, ATLAS-TDR-19 (2010), https://cds.cern.ch/record/1291633 [Google Scholar]
  3. B. Abbott et al., JINST 13, T05008 (2018), 1803.00844 [CrossRef] [Google Scholar]
  4. ATLAS Collaboration, Eur. Phys. J. C 70, 823 (2010), 1005.4568 [Google Scholar]
  5. S. Agostinelli et al. (GEANT4), Nucl. Instrum. Meth. A 506, 250 (2003) [Google Scholar]
  6. ATLAS Collaboration, Computing and Software Public Results, https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ComputingandSoftwarePublicResults [Google Scholar]
  7. ATLAS Collaboration, The new Fast Calorimeter Simulation in ATLAS, ATL-SOFT-PUB-2018-002 (2018), https://cds.cern.ch/record/2630434 [Google Scholar]
  8. ATLAS Collaboration, The simulation principle and performance of the ATLAS fast calorimeter simulation FastCaloSim, ATL-PHYS-PUB-2010-013 (2010), https://cds.cern.ch/record/1300517 [Google Scholar]
  9. R. Brun, F. Rademakers, Nucl. Instrum. Meth. A 389, 81 (1997) [NASA ADS] [CrossRef] [Google Scholar]
  10. ATLAS Collaboration, Plots on Fast Simulation for NEC, https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/SIM-2019-006/ [Google Scholar]
  11. S.J. Gasiorowski (ATLAS Collaboration), Tech. Rep. ATL-SOFT-PROC-2020-027, CERN, Geneva (2020), https://cds.cern.ch/record/2712930 [Google Scholar]
  12. I.J. Goodfellow et al., Generative Adversarial Networks (2014), 1406.2661 [Google Scholar]
  13. D.J. Rezende, S. Mohamed, D. Wierstra, Stochastic backpropagation and approximate inference in deep generative models (2014), 1401.4082 [Google Scholar]
  14. D.P. Kingma, M. Welling, Auto-Encoding Variational Bayes (2014), 1312.6114 [Google Scholar]
  15. ATLAS Collaboration, Deep generative models for fast shower simulation in ATLAS, ATL-SOFT-PUB-2018-001 (2018), https://cds.cern.ch/record/2630433 [Google Scholar]
  16. ATLAS Collaboration, Energy resolution with a Generative Adversarial Network for Fast Shower Simulation in ATLAS, https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/SIM-2019-004/ [Google Scholar]
  17. ATLAS Collaboration, VAE for photon shower simulation in ATLAS, https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/SIM-2019-007/ [Google Scholar]
  18. A. Basalaev, Z. Marshall (ATLAS), J. Phys. Conf. Ser. 898, 042016 (2017) [Google Scholar]
  19. K. Edmonds et al., The fast ATLAS track simulation (FATRAS), ATL-SOFT-PUB-2008001 (2008), https://cds.cern.ch/record/1091969 [Google Scholar]
  20. S. Hamilton et al., The ATLAS Fast Track Simulation project (FATRAS), in IEEE Nuclear Science Symposuim Medical Imaging Conference (2010), pp. 311–316 [Google Scholar]
  21. J. Mechnich et al., J. Phys. Conf. Ser. 331, 032046 (2011) [Google Scholar]
  22. ATLAS Collaboration, ATLAS Simulation CPU Performance, https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/SIM-2019-002/ [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.