Open Access
Issue
EPJ Web Conf.
Volume 247, 2021
PHYSOR2020 – International Conference on Physics of Reactors: Transition to a Scalable Nuclear Future
Article Number 03001
Number of page(s) 8
Section Deterministic Transport
DOI https://doi.org/10.1051/epjconf/202124703001
Published online 22 February 2021
  1. A. HEBERT. Applied Reactor Physics. Presses Internationales Polytechnique (2009). [Google Scholar]
  2. E. E. LEWIS, W. F. MILLER Jr. Computational Methods for Neutron Transport. JohnWiley & Sons Inc. (1984). [Google Scholar]
  3. D. FERGUSON, K. DERSTINE. “Optimized Iteration Strategies and Data Management Considerations for Fast Reactor Finite Difference Diffusion Theory Codes.” Nuclear Science & Engineering, volume 64, pp. 593–604 (1977). [Google Scholar]
  4. E. FICHTL, J. WARSA, M. CALEF. “Nonlinear acceleration of Sn transport calculations.” In Proc. of Int. Conf. on Mathematics and Computational Methods Applied to Nuclear Science and Engineering M&C 2011. Rio de Janeiro, RJ, Brazil (2011). [Google Scholar]
  5. D. SCHNEIDER, F. DOLCI, F. GABRIEL, and J.-M. P. et. al. “APOLLO3®: CEA/DEN deterministic multipurpose platform for core physics analysis.” In Proc. of Int. Mtg. on the Physics of Fuel Cycles and Advanced Nuclear Systems PHYSOR 2016. Sun Valley, USA (2016). [Google Scholar]
  6. D. ANDERSON. “Iterative procedures for nonlinear integral equation.” Journal of Association for Computing Machinery, volume 4, pp. 547–560 (1965). [Google Scholar]
  7. H. WALKER, P. NI. “Anderson acceleration for fixed-point iteration.” SIAM Journal of Numerical Analysis, volume 49, pp. 1715–1735 (2011). [Google Scholar]
  8. A. TOTH, C. KELLEY, S. SLATTERY, S, HAMILTON, K. CLARNO, R. PAWLOWSKI. “Analysis of Anderson acceleration on a simplified neutronics-thermal hydraulics system.” In Proceedings of M&C 2015. Nashville, TN, USA (2015). [Google Scholar]
  9. M. CALEF, E. FICHTL, J. WARSA, M. BERNDT, N. CARLSON. “Nonlinear Krylov acceleration applied to a discrete ordinates formulation of the k-eigenvalue problem.” Journal of Computational Physics, volume 238, pp. 188–209 (2013). [Google Scholar]
  10. S. EISENSTAT, H. WALKER. “Globally convergent inexact Newton methods.” SIAM Journal Optimization, volume 4, pp. 393–422 (1994). [Google Scholar]
  11. A. BOURAS, V. FRAYSSE. “A relaxation strategy for the Arnoldi method in eigen problems.” Technical Report TR/PA/00/16, CERFACS (2000). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.