Open Access
EPJ Web Conf.
Volume 247, 2021
PHYSOR2020 – International Conference on Physics of Reactors: Transition to a Scalable Nuclear Future
Article Number 03002
Number of page(s) 8
Section Deterministic Transport
Published online 22 February 2021
  1. A. HEBERT. Applied Reactor Physics. Presses Internationales Polytechnique (2009). [Google Scholar]
  2. D. SCHNEIDER, F. DOLCI, F. GABRIEL, and J.-M. P. et. al. “APOLLO3®: CEA/DEN deterministic multipurpose platform for core physics analysis.” In Proc. of Int. Mtg. on the Physics of Fuel Cycles and Advanced Nuclear Systems PHYSOR 2016. Sun Valley, USA (2016). [Google Scholar]
  3. J. Y. MOLLER and J. J. LAUTARD. “MINARET, a deterministic neutron transport solver for nuclear core calculations.” In Proc. of Int. Conf. on Mathematics and Computational Methods Applied to Nuclear Science and Engineering. Rio de Janeiro, Brazil (2011). [Google Scholar]
  4. D. FOURNIER and R. LE TELLIER and C. SUTEAU. “Analysis of an a posteriori Error Estimator for the Transport Equation with SN and Discontinuous Galerkin Discretizations.” Annals of Nuclear Energy, volume 38, pp. 221–231 (2011). [Google Scholar]
  5. Y. WANG and J. C. RAGUSA. “On the Convergence of DGFEM Applied to the Discrete Ordinates Transport Equation for Structured and Unstructured Triangular Meshes.” Nuclear Science and Engineering, volume 163, pp. 56–72 (2009). [Google Scholar]
  6. G. G. DAVIDSON and T. S. PALMER. “Finite Element Transport Using Wachspress Rational Basis Functions on Quadrilaterals in Diffusive Regions.” Nuclear Science and Engineering, volume 159, pp. 242–255 (2008). [Google Scholar]
  7. M. W. HACKEMACK and J. C. RAGUSA. “Quadratic serendipity discontinuous finite element discretization for SN transport on arbitrary polygonal grids.” Journal of Computational Physics, volume 374, pp. 188 – 212 (2018). [Google Scholar]
  8. E. L. WACHSPRESS. A Rational Finite Element Basis. Academic Press (1975). [Google Scholar]
  9. C. TALISCHI, G. H. PAULINO, and C. H. LE. “Honeycomb Wachspress finite elements for structural topology optimization.” Structural and Multidisciplinary Optimization, volume 37(6), pp. 569–583 (2009). [Google Scholar]
  10. L. GASTALDO, R. LE TELLIER, C. SUTEAU, D. FOURNIER, J. M. RUGGIERI. “Highorder discrete ordinate transport in non-conforming 2D Cartesian meshes.” In Proceedings of International Conference on Mathematics, Computational Methods & Reactor Physics. M&C 2009, Saratoga Springs, New York (2009). [Google Scholar]
  11. J. L. GOUT. “Rational Wachspress-type Finite Elements on Regular Hexagons.” IMA Journal of Numerical Analysis, volume 5, pp. 59–77 (1985). [Google Scholar]
  12. A. HEBERT. “A Raviart-Thomas-Schneider implementation of the Simplified Pn method in 3D hexagonal geometry.” In Proc. of Int. Mtg. on Advances in Reactor Physics to Power the Nuclear Renaissance PHYSOR 2010. ANS, Pittsburgh, USA (2010). [Google Scholar]
  13. A. A. CALLOO and A. HEBERT. “Comparing the discontinuous Galerkin and high-order diamond differencing methods for the discrete ordinates transport equation in hexagonal geometry.” In Proc. of this meeting (2020). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.