Open Access
EPJ Web Conf.
Volume 247, 2021
PHYSOR2020 – International Conference on Physics of Reactors: Transition to a Scalable Nuclear Future
Article Number 03018
Number of page(s) 8
Section Deterministic Transport
Published online 22 February 2021
  1. Andrea Zoia, Emeric Brun, and Fausto Malvagi. Alpha eigenvalue calculations with TRIPOLI-4®. Annals of Nuclear Energy, 63:276 – 284, 2014. [Google Scholar]
  2. Richard Sanchez, Daniele Tomatis, Igor Zmijarevic, and Han Gyu Joo. Analysis of alpha modes in multigroup diffusion. Nuclear Engineering and Technology,1259-1268 – 49, 2017. [Google Scholar]
  3. G.B. Bruna and K. Burn. Impact of the heavy steel reflector of a current large PWR on some safety features. In Proceedings of the TOPSAFE 2012 Conference, Helsinki, Finland, April 22-26 2012. [Google Scholar]
  4. Nicolò Abrate, Giovanni Bruna, Sandra Dulla, and Piero Ravetto. Assessment of numerical methods for the evaluation of higher-order harmonics in diffusion theory. Annals of Nuclear Energy, 128:455 – 470, 2019. [Google Scholar]
  5. N. Abrate, M. Burrone, S. Dulla, P. Ravetto, and P. Saracco. Eigenvalue formulations for the spherical harmonics approximation to the neutron transport equation. In Proceedings of the ICTT 2019 Conference, Paris, France, September 23-27 2019. [Google Scholar]
  6. D. G. Cacuci, Y. Ronen, Z. Shayer, J. J. Wagschal, and Y. Yeivin. Eigenvalue-Dependent Neutron Energy Spectra: Definitions, Analyses, and Applications. Nuclear Science and Engineering, 81(3):432–442, 2017. [Google Scholar]
  7. Augusto Gandini. On the Standard Perturbation Theory. Nuclear Science and Engineering, 79(4):426–430, dec 1981. [Google Scholar]
  8. N. Chentre, P. Saracco, S. Dulla, and P. Ravetto. On the prompt time eigenvalue estimation for subcritical multiplying systems. Annals of Nuclear Energy, 132:172–180, 2019. [Google Scholar]
  9. Paolo Saracco, Sandra Dulla, and Piero Ravetto. On the spectrum of the multigroup diffusion equations. Progress in Nuclear Energy, 59:86–95, 2012. [Google Scholar]
  10. S. Dulla, P. Ravetto, and P. Saracco. The time eigenvalue spectrum for nuclear reactors in multi-group diffusion theory. European Physical Journal Plus, 133(9):1–24, 2018. [Google Scholar]
  11. R. V. Meghreblian and D. K. Holmes. Reactor analysis. 1963. [Google Scholar]
  12. R. S. Modak, D. C. Sahni, and S. D. Paranjape. Evaluation of higher k-eigenvalues of the neutron transport equation by SN method. Annals of Nuclear Energy, 22: 359–366 1995. [Google Scholar]
  13. D. Lathouwers. Iterative computation of time-eigenvalues of the neutron transport equation. Annals of Nuclear Energy, 30(17):1793–1806, 2003. [Google Scholar]
  14. A. Sood, A. R. Forster, and K. D. Parsons. Analytical benchmark test set for criticality code verification. Progress in Nuclear Energy, 42(1):55–106, 2003. [Google Scholar]
  15. B. Davison. Neutron transport theory. International series of monographs on physics. Clarendon Press, 1958. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.