Open Access
Issue
EPJ Web Conf.
Volume 247, 2021
PHYSOR2020 – International Conference on Physics of Reactors: Transition to a Scalable Nuclear Future
Article Number 06004
Number of page(s) 8
Section Advanced Modelling and Simulation
DOI https://doi.org/10.1051/epjconf/202124706004
Published online 22 February 2021
  1. J. Jimenez, B. Chanarion, V. Sanchez and X. Cheng, “Advance Numerical Simulation for Reactor Safety,” in Proceedings of the FISA Conference, Vilnius, Lithuania, (2013). [Google Scholar]
  2. C. Demaziere, V. H. Sanchez-Espinoza and B. Chanaron, “Advanced Numerical Simulation Modelling for Reactor Safety – Contributions FROM THE CORTEX, HPMC, MCSAFE and NURESAFE Projects,” in Proceedings of the FISA Conference, Pitesti, Romania, (2019). [Google Scholar]
  3. L. Mercatali, V. H. Sanchez-Espinoza, J. Leppännen, E. Hoogenboom, R. Vocka and J. Dufek, “The EC McSAFE Project: High Performance Monte Carlo Methods for Safety Demonstration - Status and Perspectives,” in International Multi-Physics Validation Workshop, North Carolina State University, Raleigh, USA, (2018). [Google Scholar]
  4. E. Brun, F. Damian, C. Diop, E. Dumonteil, F. Hugot, C. Jouanne, Y. Lee, F. Malvagi, A. Mazzolo, O. Petit, J. Trama, T. Visonneau and A. Zoia, “Tripoli-4®, CEA, EDF and AREVA reference Monte Carlo code,” Annals of Nuclear Energy, vol. 82, pp. 151-160, (2015). [Google Scholar]
  5. J. Leppänen, M. Pusa, T. Viltanen, V. Valtavirta and T. Kaltiaisenaho, “The Serpent Monte Carlo code: Status, development and applications in 2013,” Annals of Nuclear Energy, vol. 82, pp. 142-150, (2015). [Google Scholar]
  6. S. D. Richards, G. Dobson, D. Hanlon, R. Perry, F. Tantillo and T. Ware, “MONK11A: Status and Plans for the MONK Monte Carlo Code for Criticality Safety and Reactor Physics Analysis,” in Proceedings of the International Conference on Mathematics and Conputation, Portland, (2019). [Google Scholar]
  7. J.T. Goorley, “MCNP6.1.1-Beta Release Notes,” Los Alamos, USA, LA-UR-14-24680 (2014). [Google Scholar]
  8. U. Imke and V.H. Sanchez, “Validation of the Subchannel Code SUBCHANFLOW Using the NUPEC PWR Tests (PSBT),,” Science and Technology of Nuclear Installations, (2012). [Google Scholar]
  9. P. V. Uffelen, A. Schubert, Z. Soti, C. Győri, S. Boneva, Z. Hózer, L. Luzzi, P. Blair, Jonsons, M., B. H. J. Klouzal, M. Ieremenko, V. Peri and S. Bznuni, “The application of the TRANSURANUS fuel performance code to VVER fuel – An Overview,” in Proceedings of the 13th International Conference on WWER Fuel Performance, Modelling and Experimental Support, (2019). [Google Scholar]
  10. D. Ferraro, M. Garcia, L. Mercatali, V. H. Sanchez-Espinoza, J. Leppänen and V. Valtavirta, “Foreseen capabilities, bottlenecks identification and potential limitations of Serpent MC Transport code in large-scale full 3-D burnup calculations,” in Proceedings of the International Conference on Nuclear Engineering (ICONE26), London, UK, (2018). [Google Scholar]
  11. M. Garcia, D. Ferraro, V. Sanchez-Espinoza, L. Mercatali, J. Leppänen and V. Valtavirta, “Development of a spatial domain decomposition scheme for Monte Carlo neutron transport,” in Proceedings of the International Conference on Nuclear Engineering (ICONE26), London, (2018). [Google Scholar]
  12. J. Dufek and I. Mickus, “Optimal time step length and statistics in Monte Carlo burnup simulations,” Submitted to Annals of Nuclear Energy, (2019). [Google Scholar]
  13. I. Mickus and J. Dufek, “Optimal neutron population growth in accelerated Monte Carlo criticality calculations,” Annals of Nuclear Energy, vol. 117, pp. 297-304, (2018). [Google Scholar]
  14. D. Ferraro, M. García, U. Imke, V. Valtavirta, R. Tuominen, J. Leppänen and a. V. Sanchez-Espinoza, “SERPENT/SUBCHANFLOW Coupled Burnup Calculations for VVER Fuel Assemblies,” in Proceedings of PHYSOR2020, Cambridge, UK, (2020). [Google Scholar]
  15. M. Garcia, V. Valtavirta, A. Gommlich, D. Ferraro, R. Tuominen, U. Imke, P. V. Uffelen, L. Mercatali, V. Sanchez-Espinoza, J. Leppänen and S. Kliem, “Serpent2-SUBCHANFLOW-TRANSURANUS pin-by-pin depletion calculations for a PWR fuel assembly,” in Proceedings of PHYSOR2020, Cambridge, UK, (2020). [Google Scholar]
  16. E. Deville and F. Perdu, “Documentation of the Interface for Code Coupling: ICoCo,” Technical report, DEN/DANS/DMS/STMF/LMES/RT/12-029/A, (2012). [Google Scholar]
  17. www.salome-platform.org [Google Scholar]
  18. M. Garcia, D. Ferraro, V. Valtavirta, U. Imke, R. Tuominen, V. Sanchez-Espinoza and L. Mercatali, “Development of an Object-Oriented SERPENT2-SUBCHANFLOW Coupling and Verification with Problem 6 of the VERA Core Physics Benchmark,” in Proceedings of the International Conference on Mathematics and Conputation (M&C), Portland, Oregon, USA, (2019). [Google Scholar]
  19. M. García, D. Ferraro, V. Valtavirta, R. Tuominen, U. Imke, L. Mercatali, V. Sanchez-Espinoza and J. Leppänen, “A hot-channel calculation method for Serpent2-SUBCHANFLOW applied to a full-core VVER problem,” Cambridge, UK, (2020). [Google Scholar]
  20. M. Faucher, D. Mancusia and A. Zoia, “New kinetic simulation capabilities for Tripoli-4: Methods and applications,” Annals of Nuclear Energy, vol. 120, pp. 74-88, (2019). [Google Scholar]
  21. D. Mancusi and A. Zoia, “Towards zero-variance schemes for kinetic Monte Carlo simulations,” in Proceedings of PHYSOR2020, Cambridge, UK, (2020). [Google Scholar]
  22. D. Ferraro, M. García, V. Valtavirta, U. Imke, R. Tuominen, J. Leppänen and Victor Sanchez-Espinoza, “Serpent/SUBCHANFLOW pin-by-pin coupled transient calculations for a PWR minicore,” submitted to Annals of Nuclear Energy, (2019). [Google Scholar]
  23. M. Faucher, D. Mancusi and A. Zoia, “Multi-physics transient simulations with TRIPOLI-4®,” in Proceedings of PHYSOR2020, Cambridge (UK), (2020). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.