Open Access
Issue
EPJ Web Conf.
Volume 247, 2021
PHYSOR2020 – International Conference on Physics of Reactors: Transition to a Scalable Nuclear Future
Article Number 12003
Number of page(s) 8
Section Fuel Performance and Management
DOI https://doi.org/10.1051/epjconf/202124712003
Published online 22 February 2021
  1. “Figures for Physor 2020.” Zenodo: DOI10.5281/zenodo.3446287. [Google Scholar]
  2. M. Abadi and contributors. “TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems.” (2015). Software available from tensorflow.org. [Google Scholar]
  3. F. Chollet et al. “Keras.” https://github.com/fchollet/keras (2015). [Google Scholar]
  4. D. Izzo. “Pygmo and pykep: Open source tools for massively parallel optimization in astrodynamics (the case of interplanetary trajectory optimization).” In Proceedings of the Fifth International Conference on Astrodynamics Tools and Techniques, ICATT (2012). [Google Scholar]
  5. K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. “A fast and elitist multiobjective genetic algorithm: NSGA-II.” IEEE Transactions on Evolutionary Computation, volume 6(2), pp. 182–197 (2002). [Google Scholar]
  6. A. Forrester, A. Sóbester, and A. J. Keane. Engineering Design via Surrogate Modelling: A Practical Guide. Wiley (2008). [Google Scholar]
  7. Mathworks. “Global Optimisation Toolbox Documentation.” https://uk.mathworks.com/help/gads/surrogate-optimization-algorithm.html (2019). [Google Scholar]
  8. X. Wu, T. Kozlowski, and H. Meidani. “Kriging-based inverse uncertainty quantification of nuclear fuel performance code BISON fission gas release model using time series measurement data.” Reliability Engineering & System Safety, volume 169, pp. 422–436 (2018). [Google Scholar]
  9. D. Rummelhart, G. Hinton, and R. Williams. “Learning representations by back-propagating errors.” Nature, volume 323, pp. 533–536 (1986). [Google Scholar]
  10. Y. Lecun and Y. Bengio. “Convolutional networks for images, speech, and time-series.” In M. Arbib, editor, The Handbook of Brain Theory and Neural Networks. MIT Press (1995). [Google Scholar]
  11. “Kaggle cats vs. dogs Competition.” https://www.kaggle.com/c/dogs-vs-cats (2014). [Google Scholar]
  12. J. Leppänen, M. Pusa, T. Viitanen, V. Valtavirta, and T. Kaltiaisenaho. “The Serpent Monte Carlo code: Status, development and applications in 2013.” Annals of Nuclear Energy, volume 82, pp. 142–150 (2015). [Google Scholar]
  13. W. M. Stacey. Nuclear Reactor Physics. Wiley VCH Verlag GmbH (2007). [Google Scholar]
  14. N. E. Todreas. Nuclear Systems Volume 2. Routledge (1990). [Google Scholar]
  15. I. Dario. “Pygmo 2 Documentation.” https://esa.github.io/pagmo2/ (2018). [Google Scholar]
  16. G. T. Parks. “Multiobjective pressurized water reactor reload core design by nondominated genetic algorithm search.” Nuclear Science & Engineering, volume 124(1), pp. 178–187 (1996). [Google Scholar]
  17. H. Li and Q. Zhang. “Multiobjective optimization problems with complicated Pareto sets, MOEA/D and NSGA-II.” IEEE Transactions on Evolutionary Computation, volume 13(2), pp. 284–302 (2009). [Google Scholar]
  18. C. M. Bishop. Neural Networks for Pattern Recognition. Clarendon Press (1996). [Google Scholar]
  19. Y. LeCun, Y. Bengio, and G. Hinton. “Deep Learning.” Nature, volume 521, pp. 436–444 (2005). [Google Scholar]
  20. D. P. Kingma and J. Ba. “Adam: A Method for Stochastic Optimization.” arXiv eprint arXiv:14126980 (2014). [Google Scholar]
  21. K. Simonyan and A. Zisserman. “Very deep convolutional networks for large-scale image recognition.” arXiv preprint arXiv:14091556 (2014). [Google Scholar]
  22. C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna. “Rethinking the inception architecture for computer vision.” In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2818–2826 (2016). [Google Scholar]
  23. A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto, and H. Adam. “Mobilenets: Efficient convolutional neural networks for mobile vision applications.” arXiv preprint arXiv:170404861 (2017). [Google Scholar]
  24. “Supplemental information for Physor 2020.” Zenodo: DOI10.5281/zenodo.3456792. [Google Scholar]
  25. A. Whyte, Z. Xing, G. Parks, and E. Shwageraus. “Design of a Deep Learning Surrogate Model for the Prediction of FHR Design Parameters.” In Mathematics and Computational Methods Applied to Nuclear Science and Engineering. American Nuclear Society (2019). [Google Scholar]
  26. J. J. Grefenstette. “Optimization of Control Parameters for Genetic Algorithms.” IEEE Transactions on Systems, Man, and Cybernetics, volume 16(1), pp. 122–128 (1986). [Google Scholar]
  27. M. D. McKay, R. J. Beckman, and W. J. Conover. “A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output from a Computer Code.” Technometrics, volume 21(2), pp. 239–245 (1979). [Google Scholar]
  28. I. M. Sobol. “On the Systematic Search in a Hypercube.” SIAM Journal on Numerical Analysis, volume 16(5), pp. 790–793 (1979). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.