Open Access
Issue
EPJ Web Conf.
Volume 247, 2021
PHYSOR2020 – International Conference on Physics of Reactors: Transition to a Scalable Nuclear Future
Article Number 15015
Number of page(s) 9
Section Sensitivity & Uncertainty Methods
DOI https://doi.org/10.1051/epjconf/202124715015
Published online 22 February 2021
  1. Dan G. Cacuci, “Sensitivity and Uncertainty Analysis. Volume 1: Theory”, Chapman & Hall/CRC, 2003. [Google Scholar]
  2. “ANSWERS Software Service” http://www.answerssoftwareservice.com (2019). [Google Scholar]
  3. F Tantillo and P N Smith, “SPRUCE Uncertainties Quantification Tool”, ANSWERS Seminar, Poole, UK, 23-25 May, 2017. [Google Scholar]
  4. MONK - A Monte Carlo Program for Nuclear Criticality Safety and Reactor Physics Analyses, User Guide for Version 10B, (2017). [Google Scholar]
  5. Paul Smith, David Hanlon, Geoff Dobson, Magda Stefanowska, Simon Richards, Richard Hiles and Christophe Murphy, “Tools for Validation and Uncertainty Quantification with ANSWERS Software”, Proc. ICNC 2019, Paris, 15-20 Sep 2019. [Google Scholar]
  6. S S Wilks, “Determination of sample sizes for setting tolerance limits”, Anals of Mathematical Statistics, Vol. 12, pp 91-96, 1941. [Google Scholar]
  7. B L Broadhead, B T Rearden, C M Hopper, J J Wagschal and C V Parks, “Sensitivity-and Uncertainty-Based Criticality Safety Validation Techniques”, Nuc. Sci. Eng, 146, pp 340-366, 2014. [Google Scholar]
  8. A Aslam, D Hanlon, S Richards, A Nichols, A Thallon, “Derivation of Criticality Safety Criterion for Criticality Assessments”, UK Working Party on Criticality report, WPC/P281, Issue 2, 2019. [Google Scholar]
  9. A. Hoefer, O. Buss, M. Hennebach, M. Schmid and D. Porsch, “MOCABA: A General Monte Carlo -Bayes Procedure for Improved Predictions of Integral Functions of Nuclear Data”, PHYSOR 2014, Kyoto Japan, 28 Sep – 3 Oct, (2014). [Google Scholar]
  10. “An Application Guide to Burn-up Calculations in MONK10B”, ANSWERS/MONK/REPORT/014, 2018. [Google Scholar]
  11. Axel Hoefer and Maik Stuke, “Benchmark Phase IV: Role of Integral Experiment Covariance Data for Criticality Safety Validation”, NEA/WPNCS UACSA report, to be published. [Google Scholar]
  12. Maik Stuke, Axel Hoefer, Oliver Buss, Maksym Chernykh, Geoff Dobson, James Dyrda, Tatiana Ivanova, Nicolas Leclaire, William J. Marshall, Dennis Mennerdahl, Bradley Rearden, Paul Smith, Fabian Sommer and Sven Tittlebach, “UACSA Phase IV: Role of Integral Experiment Covariance Data for Criticality Safety Validation Summary of Selected Results”, Proc. ICNC 2019, Paris, 15-20 Sep 2019. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.