Open Access
Issue
EPJ Web Conf.
Volume 247, 2021
PHYSOR2020 – International Conference on Physics of Reactors: Transition to a Scalable Nuclear Future
Article Number 15016
Number of page(s) 8
Section Sensitivity & Uncertainty Methods
DOI https://doi.org/10.1051/epjconf/202124715016
Published online 22 February 2021
  1. Y. LeCun, Y. Bengio, and G. Hinton. “Deep learning.” nature, volume 521(7553), p. 436 (2015). [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  2. R. S. Sutton and A. G. Barto. Reinforcement learning: An introduction. MIT press (2018). [Google Scholar]
  3. M. I. Radaideh and T. Kozlowski. “Combining simulations and data with deep learning and uncertainty quantification for advanced energy modeling.” International Journal of Energy Research, volume in press (2019). [PubMed] [Google Scholar]
  4. M. I. Radaideh and T. Kozlowski. “Analyzing nuclear reactor simulation data and uncertainty with the Group Method of Data Handling.” Nuclear Engineering and Technology, volume in press (2019). [Google Scholar]
  5. Y. Liu, N. Dinh, Y. Sato, and B. Niceno. “Data-driven modeling for boiling heat transfer: using deep neural networks and high-fidelity simulation results.” Applied Thermal Engineering, volume 144, pp. 305–320 (2018). [Google Scholar]
  6. J. Yang and J. Kim. “An accident diagnosis algorithm using long short-term memory.” Nuclear Engineering and Technology, volume 50(4), pp. 582–588 (2018). [Google Scholar]
  7. P. Grechanuk, M. E. Rising, and T. S. Palmer. “Using Machine Learning Methods to Predict Bias in Nuclear Criticality Safety.” Journal of Computational and Theoretical Transport, volume 47(4-6), pp. 552–565 (2018). [Google Scholar]
  8. S. M. Bowman. “SCALE 6: comprehensive nuclear safety analysis code system.” Nuclear technology, volume 174(2), pp. 126–148 (2011). [Google Scholar]
  9. F. Chollet. “Keras: Deep learning library for theano and tensorflow.” http://kerasio (2015). [Google Scholar]
  10. A. B. Owen. “Sobol’indices and Shapley value.” SIAM/ASA Journal on Uncertainty Quantification, volume 2(1), pp. 245–251 (2014). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.