Open Access
EPJ Web Conf.
Volume 247, 2021
PHYSOR2020 – International Conference on Physics of Reactors: Transition to a Scalable Nuclear Future
Article Number 21004
Number of page(s) 9
Section CORTEX
Published online 22 February 2021
  1. F. Calivà, F. De Sousa Ribeiro, A. Mylonakis, C. Demazière, P. Vinai, G. Leontidis and S. Kollias, “A deep learning approach to anomaly detection in nuclear reactors,” Proceedings of 2018 International Joint Conference on Neural Networks (IJCNN2018), Rio de Janeiro, Brazil, July 8−13, 2018 (2018). [Google Scholar]
  2. F. De Sousa Ribeiro, F. Calivà, D. Chionis, A. Dokhane, A. Mylonakis, C. Demazière, G. Leontidis and S. Kollias, “Towards a deep unified framework for nuclear reactor perturbation analysis,” Proceedings of the IEEE Symposium Series on Computational Intelligence (SSCI 2018), Bengaluru, India, November 18−21, 2018 (2018). [Google Scholar]
  3. C. Demazière, P. Vinai, M. Hursin, S. Kollias and J. Herb, “Overview of the CORTEX project,” Proceedings of the International Conference on the Physics of Reactors – Reactor Physics paving the way towards more efficient systems (PHYSOR2018), Cancun, Mexico, April 22−26, 2018 (2018). [Google Scholar]
  4. A.G. Mylonakis, P. Vinai and C. Demazière C., “Neutron noise modelling for nuclear reactor core diagnostics,” Proceedings of the 27th Symposium of the Hellenic Nuclear Physics Society, Athens, Greece, June 8−9, 2018 (2018). [Google Scholar]
  5. C. Bläsius, private communication, Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) gGmbH (2018). [Google Scholar]
  6. M.M.R. Williams, Random processes in nuclear reactors, Pergamon Press, Oxford, United Kingdom (1974). [Google Scholar]
  7. I. Pázsit, “Investigation of the space-dependent noise induced by a vibrating absorber,” Atomkernenergie, 30, pp. 29–35 (1977). [Google Scholar]
  8. C. Demazière and A. Dokhane, “Description of scenarios for the simulated data,” Deliverable D3.1 of the CORTEX project (2019). [Google Scholar]
  9. Y. LeCun, Y. Bengio and G. Hinton, “Deep learning,” Nature, 521, pp. 436–444 (2015). [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  10. G. Huang, Z. Liu, L. Van Der Maaten and K. Q. Weinberger, “Densely connected convolutional networks.” In Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR 2017), Honolulu, HI, USA, July 21−26, 2017 (2017). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.