Open Access
EPJ Web Conf.
Volume 250, 2021
DYMAT 2021 - 13th International Conference on the Mechanical and Physical Behaviour of Materials under Dynamic Loading
Article Number 01018
Number of page(s) 8
Section Experimental Techniques
Published online 09 September 2021
  1. W. Chen and B. Song, Split Hopkinson (Kolsky) Bar. Boston, MA: Springer US, 2011. [CrossRef] [Google Scholar]
  2. G. T. Gray III, “Classic Split-Hopkinson Pressure Bar Testing, ” in Mechanical Testing and Evaluation, H. Kuhn and D. Medlin, Eds. ASM International, 2000, pp. 462–476. [Google Scholar]
  3. H. D. Espinosa, A. J. Patanella, and M. Fischer, “Dynamic Friction Measurements at Sliding Velocities Representative of High-Speed Machining Processes, ” J. Tribol., vol. 122, no. 4, pp. 834–848, Oct. 2000, doi: 10.1115/1.1310331. [Google Scholar]
  4. H. D. Espinosa, A. Patanella, and M. Fischer, “A novel dynamic friction experiment using a modified kolsky bar apparatus”, Exp. Mech., vol. 40, no. 2, pp. 138–153, Jun. 2000, doi: 10.1007/BF02325039. [Google Scholar]
  5. S. Rajagopalan and V. Prakash, “A modified torsional kolsky bar for investigating dynamic friction”, Exp. Mech., vol. 39, no. 4, pp. 295–303, Dec. 1999, doi: 10.1007/BF02329808. [Google Scholar]
  6. F. Yuan and V. Prakash, “Use of a modified torsional Kolsky bar to study frictional slip resistance in rock-analog materials at coseismic slip rates”, Int. J. Solids Struct., vol. 45, no. 14–15, pp. 4247–4263, Jul. 2008, doi: 10.1016/j.ijsolstr.2008.03.012. [Google Scholar]
  7. B. Rodrigues, “Dynamic Frictional Response of Granular Materials Under Seismically Relevant Conditions Using a Novel Torsional Kolsky Bar Apparatus”, Masters of Science, Case Western Reserve, 2017. [Google Scholar]
  8. K. Ogawa, “Impact friction test method by applying stress wave”, Exp. Mech., vol. 37, no. 4, pp. 398–402, Dec. 1997, doi: 10.1007/BF02317304. [Google Scholar]
  9. S. Philippon, G. Sutter, and A. Molinari, “An experimental study of friction at high sliding velocities”, Wear, vol. 257, no. 7–8, pp. 777–784, Oct. 2004, doi: 10.1016/j.wear.2004.03.017. [Google Scholar]
  10. J. J. Arnoux, G. Sutter, G. List, and A. Molinari, “Friction Experiments for Dynamical Coefficient Measurement”, Adv. Tribol., vol. 2011, pp. 1–6, 2011, doi: 10.1155/2011/613581. [Google Scholar]
  11. A. Lodygowski, L. Faure, G. Z. Voyiadjis, and S. Philippon, “Dry Sliding Friction Experiments at Elevated Velocities: Dry Sliding Friction Experiments”, Strain, vol. 47, pp. 436–453, Dec. 2011, doi: 10.1111/j.1475-1305.2010.00785.x. [Google Scholar]
  12. G. List, G. Sutter, J. J. Arnoux, and A. Molinari, “Study of friction and wear mechanisms at high sliding speed”, Mech. Mater., vol. 80, pp. 246–254, Jan. 2015, doi: 10.1016/j.mechmat.2014.04.011. [Google Scholar]
  13. G. List, G. Sutter, and J. J. Arnoux, “Analysis of the high speed sliding interaction between titanium alloy and tantalum”, Wear, vol. 301, no. 1–2, pp. 663–670, Apr. 2013, doi: 10.1016/j.wear.2012.11.070. [Google Scholar]
  14. G. Sutter and N. Ranc, “Flash temperature measurement during dry friction process at high sliding speed”, Wear, vol. 268, no. 11–12, pp. 1237–1242, May 2010, doi: 10.1016/j.wear.2010.01.019. [Google Scholar]
  15. B. Durand, F. Delvare, P. Bailly, and D. Picart, “Friction Between Steel and a Confined Inert Material Representative of Explosives Under Severe Loadings”, Exp. Mech., vol. 54, no. 7, pp. 1293–1303, Sep. 2014, doi: 10.1007/s11340-014-9885-z. [Google Scholar]
  16. A. M. Bragov, A. Yu. Konstantinov, and A. K. Lomunov, “Determining dynamic friction using a modified Kolsky method”, Tech. Phys. Lett., vol. 34, no. 5, pp. 439–440, May 2008, doi: 10.1134/S1063785008050234. [Google Scholar]
  17. B. Sanborn, B. Song, and E. E. Nishida, “Development of a New Method to Investigate Dynamic Friction Behavior of Metallic Materials Using a Kolsky Tension Bar.”, SAND2017-11985, 1596207, Nov. 2017. doi: 10.2172/1596207. [Google Scholar]
  18. B. Sanborn, B. Song, and E. Nishida, “Development of a New Method to Investigate the Dynamic Friction Behavior of Interfaces Using a Kolsky Tension Bar”, Exp. Mech., vol. 58, no. 2, pp. 335–342, Feb. 2018, doi: 10.1007/s11340-017-0350-7. [Google Scholar]
  19. D. E. Burton, “Connectivity Structures and Differencing Techniques for StaggeredGrid Free-Lagrange Hydrodynamics”, New Brunswick, New Jersey, 1992. [Google Scholar]
  20. D. E. Burton, “Consistent finite-volume discretization of hydrodynamic conservation laws for unstructured grids”, Las Vegas, NV, 1994. [Google Scholar]
  21. E. J. Caramana, D. E. Burton, M. J. Shashkov, and P. P. Whalen, “The Construction of Compatible Hydrodynamics Algorithms Utilizing Conservation of Total Energy”, J. Comput. Phys., vol. 146, pp. 227–262, 1998. [CrossRef] [Google Scholar]
  22. M. T. Bement and M. A. Kenamond, “Slideline modeling in the FLAG hydrocode”, No. LA-UR-11-04993, 2011. [Google Scholar]
  23. D. F. P. Bowden and D. Tabor, “Mechanism of Metallic Friction”, p. 3, 1942. [Google Scholar]
  24. J. R. Whitehead, “Surface deformation and friction of metals at light loads”, p. 20, 1950. [Google Scholar]
  25. E. Rabinowicz, “Friction coefficients of noble metals over a range of loads”, Wear, vol. 159, no. 1, pp. 89–94, Nov. 1992, doi: 10.1016/0043-1648(92)90289-K. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.