Open Access
EPJ Web Conf.
Volume 250, 2021
DYMAT 2021 - 13th International Conference on the Mechanical and Physical Behaviour of Materials under Dynamic Loading
Article Number 02004
Number of page(s) 9
Section Modelling & Numerical Simulation
Published online 09 September 2021
  1. J. L. Zinszner, P. Forquin, et G. Rossiquet, « Experimental and numerical analysis of the dynamic fragmentation in a SiC ceramic under impact », Int. J. Impact Eng., vol. 76, p. 9–19, févr. 2015. [Google Scholar]
  2. J. L. Zinszner, B. Erzar, P. Forquin, et E. Buzaud, « Dynamic fragmentation of an alumina ceramic subjected to shockless spalling: An experimental and numerical study », J. Mech. Phys. Solids, vol. 85, p. 112–127, déc. 2015. [CrossRef] [Google Scholar]
  3. D. Zhang, L. G. Zhao, et A. Roy, « Mechanical Behavior of Silicon Carbide Under Static and Dynamic Compression », J. Eng. Mater. Technol., vol. 141, no 011007, juill. 2018. [Google Scholar]
  4. N. Bourne, J. Millett, Z. Rosenberg, et N. Murray, « On the shock induced failure of brittle solids », J. Mech. Phys. Solids, vol. 46, no 10, p. 1887–1908, Oct. 1998. [CrossRef] [Google Scholar]
  5. G. R. Johnson et T. J. Holmquist, « An improved computational constitutive model for brittle materials », AIP Conf. Proc., vol. 309, no 1, p. 981, mai 2008. [Google Scholar]
  6. P. Forquin et F. Hild, « A probabilistic damage model of the dynamic fragmentation process in brittle materials », Adv. Appl. Mech., vol. 44, p. 1, 2010. [Google Scholar]
  7. F. Hild, C. Denoual, P. Forquin, et X. Brajer, « On the probabilistic–deterministic transition involved in a fragmentation process of brittle materials », Comput. Struct., vol. 81, no 12, p. 1241–1253, may 2003. [Google Scholar]
  8. G. R. Johnson et W. H. Cook, « Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures », Eng. Fract. Mech., vol. 21, no 1, p. 31–48, jan. 1985. [Google Scholar]
  9. A. Matzenmiller, J. Lubliner, et R. L. Taylor, « A constitutive model for anisotropic damage in fiber-composites », Mech. Mater., vol. 20, no 2, p. 125–152, avg. 1995. [Google Scholar]
  10. A. Puck et H. Schürmann, « Failure analysis of FRP laminates by means of physically based phenomenological models », Compos. Sci. Technol., vol. 62, no 12, p. 1633–1662, sept. 2002. [Google Scholar]
  11. J. Reinoso, G. Catalanotti, A. Blázquez, P. Areias, P. P. Camanho, et F. París, « A consistent anisotropic damage model for laminated fiber-reinforced composites using the 3D-version of the Puck failure criterion », Int. J. Solids Struct., vol. 126–127, p. 37–53, Nov. 2017. [Google Scholar]
  12. J. Wiegand, « Constitutive modelling of composite materials under impact loading »,, Oxford University, UK, 2009. [Google Scholar]
  13. N. V. De Carvalho, S. T. Pinho, et P. Robinson, « An experimental study of failure initiation and propagation in 2D woven composites under compression », Compos. Sci. Technol., vol. 71, no 10, p. 1316–1325, juill. 2011. [CrossRef] [Google Scholar]
  14. F. Pascal, O. Dorival, P. Navarro, S. Marguet, et J.-F. Ferrero, « Impact damage prediction in thin woven composite laminates – Part I: Modeling strategy and validation », Compos. Struct., vol. 190, p. 32–42, avr. 2018. [Google Scholar]
  15. N. V. De Carvalho, S. T. Pinho, et P. Robinson, « Analytical modelling of the compressive and tensile response of woven composites », Compos. Struct., vol. 94, no 9, p. 2724–2735, sept. 2012. [CrossRef] [Google Scholar]
  16. Y. Duplan, « Caractérisation expérimentale et modélisation des propriétés de rupture et de fragmentation dynamiques d’un noyau de munition et de céramiques à blindage », phdthesis, Université Grenoble Alpes [2020], 2020. [Google Scholar]
  17. A. Healey, J. Cotton, S. Maclachlan, P. Smith, et J. Yeomans, « Understanding the ballistic event: methodology and initial observations », J. Mater. Sci., vol. 52, no 6, p. 3074–3085, mars 2017. [PubMed] [Google Scholar]
  18. S. T. Pinho, L. Iannucci, et P. Robinson, « Physically-based failure models and criteria for laminated fibre-reinforced composites with emphasis on fibre kinking: Part I: Development », Compos. Part Appl. Sci. Manuf., vol. 37, no 1, p. 63–73, janv. 2006. [Google Scholar]
  19. J. Lemaitre, « How to use damage mechanics », Nucl. Eng. Des., vol. 80, no 2, p. 233–245, juill. 1984. [CrossRef] [Google Scholar]
  20. P. A. Tarantili et A. G. Andreopoulos, « Mechanical properties of epoxies reinforced with chloride-treated aramid fibers », J. Appl. Polym. Sci., vol. 65, no 2, p. 267–276, 1997. [Google Scholar]
  21. J. Petrovic, D. Bekric, I. Vujicic, I. Dimic, et S. Putic, « Microstructural characterization of glass-epoxy composites subjected to tensile testing », Acta Period. Technol., no 44, p. 151–162, 2013. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.