Open Access
Issue
EPJ Web Conf.
Volume 251, 2021
25th International Conference on Computing in High Energy and Nuclear Physics (CHEP 2021)
Article Number 03040
Number of page(s) 8
Section Offline Computing
DOI https://doi.org/10.1051/epjconf/202125103040
Published online 23 August 2021
  1. A. Hoecker, P. Speckmayer, J. Stelzer, J. Therhaag, E. von Toerne, H. Voss, M. Backes, T. Carli, O. Cohen, A. Christov et al., TMVA - Toolkit for Multivariate Data Analysis (2007), physics/0703039 [Google Scholar]
  2. R. Brun, F. Rademakers, Nucl.Instrum.Meth.A 389 (1997) 81–86 [Google Scholar]
  3. S. Chatrchyan et al. (CMS), Phys. Lett. B710, 403 (2012), 1202.1487 [Google Scholar]
  4. The ATLAS collaboration, Evidence for Higgs Boson Decays to the Final State with the ATLAS Detector (2013) [Google Scholar]
  5. S. Chatrchyan, V. Khachatryan, A. Sirunyan, A. Tumasyan, W. Adam, E. Aguilo, T. Bergauer, M. Dragicevic, J. Erö, C. Fabjan et al., Physics Letters B 716, 30–61 (2012) [Google Scholar]
  6. G. Aad, T. Abajyan, B. Abbott, J. Abdallah, S. Abdel Khalek, A. Abdelalim, O. Abdinov, R. Aben, B. Abi, M. Abolins et al., Physics Letters B 716, 1–29 (2012) [Google Scholar]
  7. M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G. Irving, M. Isard et al., TensorFlow: A system for large-scale machine learning (2016) [Google Scholar]
  8. A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga et al., PyTorch: An Imperative Style, High-Performance Deep Learning Library (2019) [Google Scholar]
  9. T. Chen, M. Li, Y. Li, M. Lin, N. Wang, M. Wang, T. Xiao, B. Xu, C. Zhang, Z. Zhang, MXNet: A Flexible and Efficient Machine Learning Library for Heterogeneous Distributed Systems (2015), 1512.01274 [Google Scholar]
  10. CMSSW, GitHub repository, http://cms-sw.github.io [Google Scholar]
  11. B. Junjie, L. Fang, Z. Ke et al., ONNX: Opern Neural Network Exchange (2019) [Google Scholar]
  12. ONNX Runtime Developers, ONNX Runtime (2021), https://onnxruntime.ai/ [Google Scholar]
  13. D. Guest, J. Smith, M. Paganini, M. Kagan, M. Lanfermann, A. Krasznahorkay, D. Marley, A. Ghosh, B. Huth, Lightweight Trained Neural Network (2020), DOI 10.5281/zenodo.4310003. GitHub repository, https://github.com/lwtnn/lwtnn. [Google Scholar]
  14. J. Duarte et al., JINST 13 P07027 (2018), Fast inference of deep neural networks in FPGAs for particle physics [Google Scholar]
  15. K. Albertsson, S. An, L. Moneta, S. Wunsch, L. Zampieri, EPJ Web of Conferences 245, 06008 (2020) [Google Scholar]
  16. K. Albertsson, S. An, S. Gleyzer, L. Moneta, J. Niermann, S. Wunsch, L. Zampieri, O. Mesa, EPJ Web of Conferences 245, 06019 (2020) [Google Scholar]
  17. TMVA SOFIE - Fast Inference Code Generation Initial Commit, GitHub pull request, https://github.com/root-project/root/pull/7544 [Google Scholar]
  18. TMVA SOFIE, GitHub repository, https://github.com/sitongan/root/tree/tmva-sofie/tmva/sofie [Google Scholar]
  19. TMVAFastInferencePrototype, GitHub repository, https://github.com/sitongan/TMVAFastInferencePrototype [Google Scholar]
  20. sofie_benchmarking, GitHub repository, https://github.com/sitongan/sofie_benchmarking [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.