Open Access
EPJ Web Conf.
Volume 264, 2022
EFM21 – 15th International Conference “Experimental Fluid Mechanics 2021”
Article Number 01013
Number of page(s) 6
Section Contributions
Published online 11 July 2022
  1. World Health Organization, WHO global air quality guidelines: particulate matter (PM2.5 and PM10), ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide. Executive summary. United nations, 2021. [Google Scholar]
  2. United Nations, ‘2018 Revision of World Urbanization Prospects’. 2018. [Google Scholar]
  3. M. Kurppa, A. Hellsten, M. Auvinen, S. Raasch, T. Vesala, and L. Järvi, ‘Ventilation and Air Quality in City Blocks Using Large-Eddy Simulation—Urban Planning Perspective’, Atmosphere, vol. 9, no. 2, p. 65, Feb. 2018, doi: 10.3390/atmos9020065. [CrossRef] [Google Scholar]
  4. L. Salvadori et al., ‘Similar urbanistic typologies and morpho-metric parametrization: Analysis of a possible date of construction based classification’, presented at the 19th International Conference on Harmonisation within Atmospheric Dispersion Modelling for Regulatory Purposes, Harmo 2019; Bruges; Belgium; 3 June 2019 through 6 June 2019, 2019. [Google Scholar]
  5. M. G. Badas, L. Salvadori, M. Garau, G. Querzoli, and S. Ferrari, ‘Urban areas parameterisation for CFD simulation and cities air quality analysis’, IJEP, vol. 66, no. 1/2/3, p. 5, 2019, doi: 10.1504/IJEP.2019.104514. [CrossRef] [Google Scholar]
  6. L. Salvadori, M. G. Badas, A. Di Bernardino, G. Querzoli, and S. Ferrari, ‘A Street Graph-Based Morphometric Characterization of Two Large Urban Areas’, Sustainability, vol. 13, no. 3, p. 1025, Jan. 2021, doi: 10.3390/su13031025. [CrossRef] [Google Scholar]
  7. L. Salvadori, A. Di Bernardino, G. Querzoli, and S. Ferrari, ‘A Novel Automatic Method for the Urban Canyon Parametrization Needed by Turbulence Numerical Simulations for Wind Energy Potential Assessment’, Energies, vol. 14, no. 16, p. 4969, Aug. 2021, doi: 10.3390/en14164969. [CrossRef] [Google Scholar]
  8. F. Trindade da Silva et al., ‘Atmospheric dispersion and urban planning: An interdisciplinary approach to city modeling’, Sustainable Cities and Society, vol. 70, p. 102882, Jul. 2021, doi: 10.1016/j.scs.2021.102882. [CrossRef] [Google Scholar]
  9. F. Costabile, F. Wang, W. Hong, F. Liu, and I. Allegrini, ‘CFD modelling of traffic-related air pollutants around an urban street-canyon in Suzhou’, in Air Pollution XIV, The New Forest, UK, May 2006, vol. 1, pp. 297–306. doi: 10.2495/AIR06030. [CrossRef] [Google Scholar]
  10. F. Costabile, F. Wang, W. Hong, F. Liu, and I. Allegrini, ‘Spatial Distribution of Traffic Air Pollution and Evaluation of Transport Vehicle Emission Dispersion in Ambient Air in Urban Areas’, JSME Int. J., Ser. B, vol. 49, no. 1, pp. 27–34, 2006, doi: 10.1299/jsmeb.49.27. [CrossRef] [Google Scholar]
  11. A. D. Bernardino, P. Monti, G. Leuzzi, F. Sammartino, and S. Ferrari, ‘Experimental investigation of turbulence and dispersion around an isolated cubic building’, HARMO 2017 18th International Conference on Harmonisation within Atmospheric Dispersion Modelling for Regulatory Purposes, Proceedings, pp. 460–464, 2017. [Google Scholar]
  12. M. F. Yassin, ‘Impact of height and shape of building roof on air quality in urban street canyons’, Atmospheric Environment, vol. 45, no. 29, pp. 5220–5229, Sep. 2011, doi: 10.1016/j.atmosenv.2011.05.060. [CrossRef] [Google Scholar]
  13. S. Ferrari, M. G. Badas, M. Garau, L. Salvadori, A. Seoni, and G. Querzoli, ‘On The Effect Of The Shape Of Buildings And Chimneystacks On Ventilation And Pollutant Dispersion’, EPJ Web Conf., vol. 213, p. 02017, 2019, doi: 10.1051/epjconf/201921302017. [CrossRef] [EDP Sciences] [Google Scholar]
  14. S. Ferrari, ‘Image analysis techniques for the study of turbulent flows’, EPJ Web of Conferences, vol. 143, p. 01001, 2017, doi: 10.1051/epjconf/201714301001. [CrossRef] [EDP Sciences] [Google Scholar]
  15. S. Ferrari and G. Querzoli, ‘Laboratory experiments on the interaction between inclined negatively buoyant jets and regular waves’, EPJ Web of Conferences, vol. 92, p. 02018, 2015, doi: 10.1051/ epjconf/20159202018. [CrossRef] [EDP Sciences] [Google Scholar]
  16. S. Ferrari, M. Badas, and G. Querzoli, ‘On the Effect of Regular Waves on Inclined Negatively Buoyant Jets’, Water, vol. 10, no. 6, p. 726, Jun. 2018, doi: 10.3390/w10060726. [CrossRef] [Google Scholar]
  17. S. Ferrari, M. G. Badas, and G. Querzoli, ‘A nonintrusive and continuous-in-space technique to investigate the wave transformation and breaking over a breakwater’, EPJ Web of Conferences, vol. 114, p. 02022, 2016, doi: 10.1051/epjconf/201611402022. [CrossRef] [EDP Sciences] [Google Scholar]
  18. Š. Nosek, L. Kukačka, K. Jurčáková, R. Kellnerová, and Z. Jaňour, ‘Impact of roof height non-uniformity on pollutant transport between a street canyon and intersections’, Environmental Pollution, vol. 227, pp. 125–138, Aug. 2017, doi: 10.1016/j.envpol.2017.03.073. [CrossRef] [Google Scholar]
  19. D. J. Hall, S. Walker, and A. M. Spanton, ‘Dispersion from courtyards and other enclosed spaces’, Atmospheric Environment, vol. 33, no. 8, pp. 1187–1203, Apr. 1999, doi: 10.1016/S1352-2310(98)00284-2. [CrossRef] [Google Scholar]
  20. F. Trindade da Silva, N. C. Reis, J. M. Santos, E. V. Goulart, and C. Engel de Alvarez, ‘The impact of urban block typology on pollutant dispersion’, Journal of Wind Engineering and Industrial Aerodynamics, vol. 210, p. 104524, Mar. 2021, doi: 10.1016/j.jweia.2021.104524. [CrossRef] [Google Scholar]
  21. M. Taleghani, M. Tenpierik, and A. van den Dobbelsteen, ‘Energy performance and thermal comfort of courtyard/atrium dwellings in the Netherlands in the light of climate change’, Renewable Energy, vol. 63, pp. 486–497, Mar. 2014, doi: 10.1016/j.renene.2013.09.028. [CrossRef] [Google Scholar]
  22. G. M. Chiri, M. Achenza, A. Canì, L. Neves, L. Tendas, and S. Ferrari, ‘The Microclimate Design Process in Current African Development: The UEM Campus in Maputo, Mozambique’, Energies, vol. 13, no. 9, p. 2316, May 2020, doi: 10.3390/en13092316. [CrossRef] [Google Scholar]
  23. O. Al-Hafith, S. B K, S. Bradbury, and P. de Wilde, ‘The Impact of Courtyard parameters on its shading level An experimental study in Baghdad, Iraq’, Energy Procedia, vol. 134, pp. 99–109, Oct. 2017, doi: 10.1016/j.egypro.2017.09.539. [CrossRef] [Google Scholar]
  24. M. A. Cantón, C. Ganem, G. Barea, and J. F. Llano, ‘Courtyards as a passive strategy in semi dry areas. Assessment of summer energy and thermal conditions in a refurbished school building’, Renewable Energy, vol. 69, pp. 437–446, Sep. 2014, doi: 10.1016/j.renene.2014.03.065. [CrossRef] [Google Scholar]
  25. V.-V. Paunu et al., ‘Spatial distribution of residential wood combustion emissions in the Nordic countries: How well national inventories represent local emissions?’, Atmospheric Environment, vol. 264, p. 118712, Nov. 2021, doi: 10.1016/j.atmosenv.2021.118712. [CrossRef] [Google Scholar]
  26. L. N. Huy, E. Winijkul, and N. T. Kim Oanh, ‘Assessment of emissions from residential combustion in Southeast Asia and implications for climate forcing potential’, Science of The Total Environment, vol. 785, p. 147311, Sep. 2021, doi: 10.1016/j.scitotenv.2021.147311. [CrossRef] [Google Scholar]
  27. I. Suryati, R. Zulkarnain, and A. Pratama, ‘Analysis of PM10 dispersion models from coal-fired power plant activities in North Sumatera by using CALPUFF’, IOP Conf. Ser.: Earth Environ. Sci., vol. 802, no. 1, p. 012033, Jun. 2021, doi: 10.1088/1755-1315/802/1/012033. [CrossRef] [Google Scholar]
  28. M. Bruse and H. Fleer, ‘Simulating surface-plant-air interactions inside urban environments with a three dimensional numerical model’, Environmental Modelling and Software, vol. 13, no. 3–4, pp. 373–384, 1998, doi: 10.1016/S1364-8152(98)00042-5. [CrossRef] [Google Scholar]
  29. K. Fabbri and V. Costanzo, ‘Drone-assisted infrared thermography for calibration of outdoor microclimate simulation models’, Sustainable Cities and Society, vol. 52, p. 101855, Jan. 2020, doi: 10.1016/j.scs.2019.101855. [CrossRef] [Google Scholar]
  30. N. Nasrollahi, M. Hatami, S. R. Khastar, and M. Taleghani, ‘Numerical evaluation of thermal comfort in traditional courtyards to develop new microclimate design in a hot and dry climate’, Sustainable Cities and Society, vol. 35, pp. 449–467, Nov. 2017, doi: 10.1016/j.scs.2017.08.017. [CrossRef] [Google Scholar]
  31. J. Wu, K. Luo, Y. Wang, and Z. Wang, ‘Urban road greenbelt configuration: The perspective of PM2.5 removal and air quality regulation’, Environment International, vol. 157, p. 106786, Dec. 2021, doi: 10.1016/j.envint.2021.106786. [CrossRef] [PubMed] [Google Scholar]
  32. M. Viecco, H. Jorquera, A. Sharma, W. Bustamante, H. J. S. Fernando, and S. Vera, ‘Green roofs and green walls layouts for improved urban air quality by mitigating particulate matter’, Building and Environment, vol. 204, p. 108120, Oct. 2021, doi: 10.1016/j.buildenv.2021.108120. [CrossRef] [Google Scholar]
  33. D. (Jian) Sun, S. Wu, S. Shen, and T. Xu, ‘Simulation and assessment of traffic pollutant dispersion at an urban signalized intersection using multiple platforms’, Atmospheric Pollution Research, vol. 12, no. 7, p. 101087, Jul. 2021, doi: 10.1016/j.apr.2021.101087. [CrossRef] [Google Scholar]
  34. L. Jing and Y. Liang, ‘The impact of tree clusters on air circulation and pollutant diffusion-urban micro scale environmental simulation based on ENVI-met’, IOP Conf. Ser.: Earth Environ. Sci., vol. 657, p. 012008, Feb. 2021, doi: 10.1088/17551315/657/1/012008. [CrossRef] [Google Scholar]
  35. Y. Xing and P. Brimblecombe, ‘Role of vegetation in deposition and dispersion of air pollution in urban parks’, Atmospheric Environment, vol. 201, pp. 73–83, Mar. 2019, doi: 10.1016/j.atmosenv.2018.12.027. [CrossRef] [Google Scholar]
  36. B. Blocken, ‘Computational Fluid Dynamics for urban physics: Importance, scales, possibilities, limitations and ten tips and tricks towards accurate and reliable simulations’, Building and Environment, vol. 91, pp. 219–245, Sep. 2015, doi: 10.1016/ j.buildenv.2015.02.015. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.