Open Access
Issue |
EPJ Web of Conf.
Volume 295, 2024
26th International Conference on Computing in High Energy and Nuclear Physics (CHEP 2023)
|
|
---|---|---|
Article Number | 09009 | |
Number of page(s) | 8 | |
Section | Artificial Intelligence and Machine Learning | |
DOI | https://doi.org/10.1051/epjconf/202429509009 | |
Published online | 06 May 2024 |
- S. Campos Martinez, J. Salt, S, Gonzalez and M. Villaplana, Proceeding of CTD/WIT 2019, PROC-2019-011, presented at Connecting the Dots and Workshop on Intelligent Trackers, Valencia, April 2-5, 2019 [Google Scholar]
- P. Baldi, K. Cranmer, T. Faucett, P. Sadowski and D. Whiteson, “Parameterized neural networks for high-energy physics”, The European Physical Journal C, vol. 75-5, April 2016. DOI 10.1140/epjc/s10052-016-4099-4 [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- D. Whiteson, HEPMASS. UCI Machine Learning Repository, 2016. https://doi.org/10.24432/C5PP5W [Google Scholar]
- Georges Aad et al., ”A search for tt¯ resonances using lepton-plus-jets events in proton-proton collisions at √s = 8 TeV with the ATLAS detector”. In Journal of High Energy Physics, vol. 2015-8, 2015. DOI: https://doi.org/10.1007/JHEP08%282015%29148, arXiv:1505.07018v2 [hep-ex] [Google Scholar]
- J. Alwall et al., “The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations”, arXiv:1405.0301 [hep-ph] INSPIRE [Google Scholar]
- A. García Rodríguez, “Estudio de la extracción de la señal resonante de sucesos tt¯ mediante técnicas de Machine Learning en el experimento ATLAS”. Bachelor’s thesis. Universitat de València. June 2022. https://doi.org/10.5281/zenodo.8367903 [Google Scholar]
- B. Hashemi, N. Armin, K. Datta, D Olivito, M. Pirini. “LHC analysis-specific datasets with Generative Adversarial Networks”, arXiv:1901.05282V1, June 2019. [Google Scholar]
- DarkMachines community, LHCsimulationProject, Feb 2020, doi:10.5281/zenodo.3685861. Available at: https://zenodo.org/record/3685861 [Google Scholar]
- D. P. Kingma and M. Welling, “Auto-encoding variational bayes”, 2022. arXiv:1312.6114. [Google Scholar]
- T. Aarrestad, et al., “The Dark Machines Anomaly Score Challenge: Benchmark Data and Model Independent Event Classification for the Large Hadron Collider”, SciPost Phys., vol. 12, p. 43, 2022. [CrossRef] [Google Scholar]
- R. Balanzá García, “Use of deep learning generative models for Monte Carlo event simulation in the context of LHC experiments”, bachelor’s thesis, Universitat Politècnica de València, 2022. Available at: http://hdl.handle.net/10251/185480 [Google Scholar]
- C.M., Bishop, “Pattern recognition and machine learning”. Information Science and Statistics series, Vol. 4 No. 4. New York: Springer, 2006. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.