Open Access
Issue
EPJ Web of Conf.
Volume 295, 2024
26th International Conference on Computing in High Energy and Nuclear Physics (CHEP 2023)
Article Number 09010
Number of page(s) 7
Section Artificial Intelligence and Machine Learning
DOI https://doi.org/10.1051/epjconf/202429509010
Published online 06 May 2024
  1. S. Agostinelli et al. (GEANT4), Nucl. Instrum. Meth. A 506, 250 (2003) [CrossRef] [Google Scholar]
  2. J. Albrecht et al. (HEP Software Foundation), Computing and Software for Big Science 3, 7 (2019), 1712.06982 [CrossRef] [Google Scholar]
  3. G. Apollinari, O. Brüning, T. Nakamoto, L. Rossi, CERN Yellow Report pp. 1–19 (2015), chapter 1 in High-Luminosity Large Hadron Collider (HL-LHC) : Preliminary Design Report, 1705.08830 [Google Scholar]
  4. C.O. Software, Computing, Tech. rep., Geneva (2022), https://cds.cern.ch/ record/2815292 [Google Scholar]
  5. The CMS collaboration (CMS), The CMS HGCAL detector for HL-LHC upgrade, in 5th Large Hadron Collider Physics Conference (2017), 1708.08234 [Google Scholar]
  6. I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, Y. Bengio, Commun. ACM 63, 139 (2020), 1406.2661 [CrossRef] [Google Scholar]
  7. D.P. Kingma, M. Welling (2013), 1312.6114 [Google Scholar]
  8. L. de Oliveira, M. Paganini, B. Nachman, Comput. Software Big Sci. 4 (2017), 1701.05927 [Google Scholar]
  9. M. Paganini, L. de Oliveira, B. Nachman, Phys. Rev. Lett. 120, 042003 (2018), 1705.02355 [CrossRef] [PubMed] [Google Scholar]
  10. M. Paganini, L. de Oliveira, B. Nachman, Phys. Rev. D 97, 014021 (2018), 1712.10321 [CrossRef] [Google Scholar]
  11. M. Erdmann, L. Geiger, J. Glombitza, D. Schmidt, Comput. Softw. Big Sci. 2, 4 (2018), 1802.03325 [CrossRef] [Google Scholar]
  12. M. Erdmann, J. Glombitza, T. Quast, Comput. Softw. Big Sci. 3, 4 (2019), 1807.01954 [CrossRef] [Google Scholar]
  13. F. Carminati, A. Gheata, G. Khattak, P. Mendez Lorenzo, S. Sharan, S. Vallecorsa, J. Phys. Conf. Ser. 1085, 032016 (2018) [CrossRef] [Google Scholar]
  14. G. Aad et al., Comput Softw Big Sci 6, 7 (2022) [CrossRef] [Google Scholar]
  15. B. Käch, D. Krücker, I. Melzer-Pellmann, M. Scham, S. Schnake, A. Verney-Provatas, Jetflow: Generating jets with conditioned and mass constrained normalising flows (2022), 2211.13630 [Google Scholar]
  16. B. Käch, D. Krücker, I. Melzer-Pellmann, Point cloud generation using transformer encoders and normalising flows (2022), 2211.13623 [Google Scholar]
  17. S. Schnake, D. Krücker, K. Borras, Generating calorimeter showers as point clouds (2022), https://ml4physicalsciences.github.io/2022/files/NeurIPS_ ML4PS_2022_77.pdf [Google Scholar]
  18. F. Scarselli, M. Gori, A.C. Tsoi, M. Hagenbuchner, G. Monfardini, IEEE Transactions on Neural Networks 20, 61 (2009) [CrossRef] [PubMed] [Google Scholar]
  19. T.N. Kipf, M. Welling, IEEE Transactions on Neural Networks. 5, 61 (2016), 1609.02907 [Google Scholar]
  20. D.W. Shu, S.W. Park, J. Kwon, 3d point cloud generative adversarial network based on tree structured graph convolutions (2019), 1905.06292 [Google Scholar]
  21. R. Kansal, J. Duarte, H. Su, B. Orzari, T. Tomei, M. Pierini, M. Touranakou, J.R. Vlimant, D. Gunopulos (2022), 2106.11535 [Google Scholar]
  22. T. Sjostrand, S. Mrenna, P.Z. Skands, Comput. Phys. Commun. 178, 852 (2008), 0710.3820 [Google Scholar]
  23. R. Kansal et al., Jetnet (2022), https://doi.org/10.5281/zenodo.6975118 [Google Scholar]
  24. R. Kansal et al., Jetnet150 (2022), https://doi.org/10.5281/zenodo.6975117 [Google Scholar]
  25. R. Kansal, JetNet library for machine learning in high energy physics (2022), https://doi.org/10.5281/zenodo.7140150 [Google Scholar]
  26. R. Kansal, MPGAN code, https://github.com/rkansal47/MPGAN/tree/ neurips21 [Google Scholar]
  27. V. Mikuni, B. Nachman, Phys. Rev. D 106, 092009 (2022), 2206.11898 [CrossRef] [Google Scholar]
  28. V. Mikuni, B. Nachman, M. Pettee (2023), 2304.01266 [Google Scholar]
  29. R. Kansal, A. Li, J. Duarte, N. Chernyavskaya, M. Pierini, B. Orzari, T. Tomei, Physical Review D 107 (2023) [CrossRef] [Google Scholar]
  30. M. Leigh, D. Sengupta, G. Quétant, J.A. Raine, K. Zoch, T. Golling, Pc-jedi: Diffusion for particle cloud generation in high energy physics (2023), 2303.05376 [Google Scholar]
  31. E. Buhmann, Getting High: High Fidelity Simulation of High Granularity Calorimeters with High Speed (2020) [Google Scholar]
  32. E. Buhmann, G. Kasieczka, J. Thaler (2023), 2301.08128 [Google Scholar]
  33. E. Buhmann, S. Diefenbacher, E. Eren, F. Gaede, G. Kasieczka, A. Korol, K. Krüger, EPJ Web Conf. 251, 03003 (2021), 2102.12491 [Google Scholar]
  34. E. Buhmann, C. Ewen, D.A. Faroughy, T. Golling, G. Kasieczka, M. Leigh, G. Quétant, J.A. Raine, D. Sengupta, D. Shih, Epic-ly fast particle cloud generation with flowmatching and diffusion (2023), 2310.00049 [Google Scholar]
  35. K. Xu, W. Hu, J. Leskovec, S. Jegelka, How powerful are graph neural networks? (2019), 1810.00826 [Google Scholar]
  36. M. Fey, J.E. Lenssen, Fast Graph Representation Learning with PyTorch Geometric, in ICLR Workshop on Representation Learning on Graphs and Manifolds (2019) [Google Scholar]
  37. S. Ioffe, C. Szegedy, Batch normalization: Accelerating deep network training by reducing internal covariate shift (2015), 1502.03167 [Google Scholar]
  38. J.H. Lim, J.C. Ye, Geometric gan (2017), 1705.02894 [Google Scholar]
  39. D.P. Kingma, T. Salimans, R. Jozefowicz, X. Chen, I. Sutskever, M. Welling, Improved Variational Inference with Inverse Autoregressive Flow, in Proceedings of the 30th International Conference on Neural Information Processing Systems (Curran Associates Inc., Red Hook, NY, USA, 2016), NIPS’16, p. 4743, ISBN 9781510838819, 1606.04934 [Google Scholar]
  40. F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg et al., Journal of Machine Learning Research 12, 2825 (2011) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.